Some operator convex functions of several variables

Zhihua Zhang ${ }^{\text {a,b,* }}$
${ }^{\text {a }}$ School of Mathematical Sciences, University of Electronic Science and
Technology of China, Chengdu, China
b Mathematical Institute, Tohoku University, Sendai, Japan

A R T I C L E I N F O

Article history:

Received 6 June 2014
Accepted 17 August 2014
Available online 14 September 2014
Submitted by R. Brualdi

MSC:

47A05
47A60
47A64

Keywords:
Operator convex function
Fréchet differential
Regular operator mapping

A B S T R A C T

We obtain operator concavity (convexity) of some functions of two or three variables by using perspectives of regular operator mappings of one or several variables. As an application, we obtain, for $0<p<1$, concavity, respectively convexity, of the Fréchet differential mapping associated with the functions $t \rightarrow t^{1+p}$ and $t \rightarrow t^{1-p}$.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

We study convexity or concavity of certain operator mappings. Some of them may be expressed by the functional calculus for functions of several variables while others are of a more general nature.

[^0]
1.1. The functional calculus

Let \mathcal{H} denote an n-dimensional Hilbert space. The space $B(\mathcal{H})$ of bounded linear operators on \mathcal{H} is itself a Hilbert space with inner product given by $(A, B)=\operatorname{Tr}\left(B^{*} A\right)$ for $A, B \in B(\mathcal{H})$.

Definition 1.1. Let $f: I_{1} \times \cdots \times I_{k} \rightarrow \mathbb{R}$ be a function defined in a product of real intervals, and let X_{1}, \ldots, X_{k} be commuting operators on \mathcal{H} with spectra $\sigma\left(X_{i}\right) \subseteq I_{i}$ for $i=1, \cdots, k$. We say that the k-tuple $\left(X_{1}, \ldots, X_{k}\right)$ is in the domain of f. Consider the spectral resolution

$$
X_{m}=\sum_{i_{m}=1}^{n_{m}} \lambda_{i_{m}}(m) P_{i_{m}}
$$

where $\lambda_{1}(m), \ldots, \lambda_{n_{m}}(m)$ for $m=1, \ldots, k$ are the eigenvalues of X_{m}. The functional calculus is defined by setting

$$
f\left(X_{1}, \ldots, X_{k}\right)=\sum_{i_{1}=1}^{n_{1}} \cdots \sum_{i_{k}=1}^{n_{k}} f\left(\lambda_{i_{1}}(1), \ldots, \lambda_{i_{k}}(k)\right) P_{i_{1}}(1) \cdots P_{i_{k}}(k)
$$

which makes sense since $\lambda_{i_{m}}(m) \in I_{m}$ for $i_{m}=1, \ldots, n_{m}$ and $m=1, \ldots, k$.
Since the operators X_{1}, \ldots, X_{k} in the above definition are commuting all of the spectral projections $P_{i_{m}}(m)$ do also commute. The functional calculus therefore defines $f\left(X_{1}, \ldots, X_{k}\right)$ as a self-adjoint operator on \mathcal{H}. Notice that if the tuples $\left(X_{1}, \ldots, X_{k}\right)$ and $\left(Y_{1}, \ldots, Y_{k}\right)$ are in the domain of f then so is the tuple $\left(\lambda X_{1}+(1-\lambda) Y_{1}, \ldots, \lambda X_{k}+(1-\right.$ $\left.\lambda) Y_{k}\right)$ for $\lambda \in[0,1]$.

In order to study convexity properties of the functional calculus it is convenient to consider commuting C^{*}-subalgebras $\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}$ of $B(\mathcal{H})$ and require that $X_{m} \in \mathcal{A}_{m}$ for $m=1, \ldots, k$. For more details on the functional calculus the reader may refer to $[12,7,8]$.

The restriction of the functional calculus by f to k-tuples of operators $\left(X_{1}, \ldots, X_{k}\right) \in$ $\mathcal{A}_{1} \times \cdots \times \mathcal{A}_{k}$ in the domain of f is said to be convex if

$$
\begin{aligned}
& f\left(\lambda X_{1}+(1-\lambda) Y_{1}, \ldots, \lambda X_{k}+(1-\lambda) Y_{k}\right) \\
& \quad \leq \lambda f\left(X_{1}, \ldots, X_{k}\right)+(1-\lambda) f\left(Y_{1}, \ldots, Y_{k}\right)
\end{aligned}
$$

for $\lambda \in[0,1]$.
Definition 1.2. Let $f: I_{1} \times \cdots \times I_{k} \rightarrow \mathbb{R}$ be a function defined in a product of real intervals. We say that f is matrix convex of order n if the restriction of the functional calculus by f to operators $\left(X_{1}, \ldots, X_{k}\right) \in \mathcal{A}_{1} \times \cdots \times \mathcal{A}_{k}$ in the domain of f is convex for arbitrary commuting C^{*}-subalgebras $\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}$ of $B(\mathcal{H})$.

https://daneshyari.com/en/article/4599352

Download Persian Version:

https://daneshyari.com/article/4599352

Daneshyari.com

[^0]: * Correspondence to: School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, China.

