The inertia sets of graphs with a 2 -separation

Hein van der Holst ${ }^{1}$
Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA

A R T I C L E I N F O

Article history:

Received 5 June 2014
Accepted 5 September 2014
Available online 19 September 2014
Submitted by R. Loewy

MSC:

05C50
15A18

Keywords:
Graph
Inertia
Symmetric matrices
2-Separation

A B S T R A C T

For a graph $G=(V, E)$ with $V=\{1,2, \ldots, n\}$, let $\mathcal{S}(G)$ be the set of all symmetric real $n \times n$ matrices $A=\left[a_{i, j}\right]$ with $a_{i, j} \neq 0, i \neq j$ if and only if $i j \in E$. The inertia set of a graph G is the set of all possible inertias of matrices in $\mathcal{S}(G)$. In this paper we give a formula that expresses the inertia set of a graph with a 2 -separation in terms of the inertia sets of subgraphs of G. This formula follows from an extension to arbitrary fields with characteristic not equal to two.

$$
\text { © } 2014 \text { Elsevier Inc. All rights reserved. }
$$

1. Introduction

The inertia of a symmetric real $n \times n$ matrix A is the triple (p, q, r) with p the number of positive eigenvalues, q the number of negative eigenvalues, and r the nullity, respectively, where we take the multiplicities of the eigenvalues into account. Clearly, $n=p+q+r$. The partial inertia of A, denoted $\operatorname{pin}(A)$, is the pair (p, q).

[^0]For a graph $G=(V, E)$ with $V=\{1,2, \ldots, n\}$ and a field \mathbb{F}, let $\mathcal{S}(G ; \mathbb{F})$ be the set of all symmetric $n \times n$ matrices $A=\left[a_{i, j}\right]$ with entries in \mathbb{F} and with

1. $a_{i, j}=0$ if $i \neq j$ and i and j are not adjacent,
2. $a_{i, j} \neq 0$ if $i \neq j$ and there is exactly one edge between i and j,
3. $a_{i, j} \in \mathbb{F}$ if $i \neq j$ and there are multiple edges between i and j,
4. $a_{i, i} \in \mathbb{F}$ for $i \in V$.

We will denote $\mathcal{S}(G ; \mathbb{R})$ by $\mathcal{S}(G)$. The inverse inertia problem for G asks what inertias are attained by matrices in $\mathcal{S}(G)$. This problem has been first extensively studied by Barrett et al. [2], and extends the problem of finding the minimum rank of a graph; see [4] for a survey of the minimum rank problem of graphs. The inertia set of a graph G is defined as the set of partial inertias of all matrices in $\mathcal{S}(G)$; that is,

$$
\mathcal{I}(G)=\{\operatorname{pin}(A) \mid A \in \mathcal{S}(G)\}
$$

The minimum rank of G, denoted $\operatorname{mr}(G)$, is the smallest rank over all matrices in $\mathcal{S}(G)$. Clearly, $\operatorname{mr}(G)=\min \{p+q \mid(p, q) \in \mathcal{I}(G)\}$.

A separation of a graph $G=(V, E)$ is a pair of subgraphs $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1}\right) \cup$ $V\left(G_{2}\right)=V, E\left(G_{1}\right) \cup E\left(G_{2}\right)=E$, and $E\left(G_{1}\right) \cap E\left(G_{2}\right)=\emptyset$. The order of a separation is $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right|$. A k-separation is a separation of order k. For a set \mathcal{I} of pairs of nonnegative integers and a nonnegative integer n, define $[\mathcal{I}]_{n}=\{(p, q) \mid(p, q) \in \mathcal{I}, p+q \leq$ $n\}$. For sets \mathcal{I}_{1} and \mathcal{I}_{2} of pairs of nonnegative integers, define $\mathcal{I}_{1}+\mathcal{I}_{2}=\left\{\left(p_{1}+p_{2}, q_{1}+q_{2}\right) \mid\right.$ $\left.\left(p_{1}, q_{1}\right) \in \mathcal{I}_{1},\left(p_{2}, q_{2}\right) \in \mathcal{I}_{2}\right\}$.

Let $\left(G_{1}, G_{2}\right)$ be a 1-separation of a graph $G=(V, E)$ with $V=\{1,2, \ldots, n\}$ and let r be the common vertex of G_{1} and G_{2}. Barrett et al. [2] showed among other things that

$$
\mathcal{I}(G)=\left[\mathcal{I}\left(G_{1}\right)+\mathcal{I}\left(G_{2}\right)\right]_{n} \cup\left[\mathcal{I}\left(G_{1}-r\right)+\mathcal{I}\left(G_{2}-r\right)+\{(1,1)\}\right]_{n}
$$

In [6], we gave a formula which allows to compute the minimum rank of a graph G with a 2 -separation $\left(G_{1}, G_{2}\right)$ using the minimum ranks of certain small variations of the subgraphs G_{1} and G_{2}. In this paper, we prove that a similar formula holds for the inertia set of a graph G with a 2-separation $\left(G_{1}, G_{2}\right)$. That is, we prove the following theorem.

Theorem 1. Let $\left(G_{1}, G_{2}\right)$ be a 2-separation of a graph G with n vertices, let H_{1} and H_{2} be obtained from G_{1} and G_{2}, respectively, by adding an edge between the vertices of $R=\left\{r_{1}, r_{2}\right\}=V\left(G_{1}\right) \cap V\left(G_{2}\right)$, and let $\overline{G_{1}}$ and $\overline{G_{2}}$ be obtained from G_{1} and G_{2}, respectively, by identifying r_{1} and r_{2}. Then

$$
\begin{aligned}
\mathcal{I}(G)= & {\left[\mathcal{I}\left(G_{1}\right)+\mathcal{I}\left(G_{2}\right)\right]_{n} } \\
& \cup\left[\mathcal{I}\left(H_{1}\right)+\mathcal{I}\left(H_{2}\right)\right]_{n} \\
& \cup\left[\mathcal{I}\left(\overline{G_{1}}\right)+\mathcal{I}\left(\overline{G_{2}}\right)+\{(1,1)\}\right]_{n}
\end{aligned}
$$

https://daneshyari.com/en/article/4599360

Download Persian Version:
https://daneshyari.com/article/4599360

Daneshyari.com

[^0]: E-mail address: hvanderholst@gsu.edu.
 ${ }^{1}$ Research partially supported by a Cleon C. Arrington Research Initiation Grant of Georgia State University.

