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1. Introduction

An entrywise nonnegative matrix A = [a;;] € R™*" is called row stochastic (or simply
stochastic) if all its row sums are 1, that is,

Zaij =1, foreachie N =1{1,2,...,n}.
j=1
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Obviously, 1 is an eigenvalue of a stochastic matrix with a corresponding eigenvector
e =[1,1,...,1]T. From the Perron-Frobenius Theorem [1], for any eigenvalue \ of A,
that is, A € 0(A), we have |A| < 1, so that in fact 1 is a dominant eigenvalue for A [3].
Here we call A a subdominant eigenvalue of a stochastic matrix A if 1 > |\| > |n| for all
eigenvalues 7 different from 1 and A [3,5,6].

Stochastic matrices and eigenvalue localization of stochastic matrices play key roles
in many application fields such as Computer Aided Geometric Design [9], Birth-Death
Processes [2,4,7,8], and Markov chain [10].

In [3], L.J. Cvetkovié et al. presented a region including all eigenvalues of a stochastic
matrix A different from 1 by refining the Gersgorin circle [11] of A.

Theorem 1. (See [3, Theorem 3.4].) Let A = [a;;] € R™*™ be a stochastic matriz, and let
s; be the minimal element among the off-diagonal entries of the i-th column of A, that
is, s; = minjx; aj;. Taking v(A) = max;en(ai — S;), then for any A € o(A)\{1},

A= ~(A)| <r(A) =1— trace(A) + (n — 1)v(A).

Although Theorem 1 provides a circle with the center v(A) and radius equal to
1 — trace(A) + (n — 1)7(A) to localize the eigenvalue A, it is not effective in some cases.
Consider the following class of matrices

SMo={A € R"": Ais stochastic, and a;; = s; = 0, for each i € N }.

Then for any A € SMy, trace(A) = 0 and y(A) = 0. Hence by Theorem 1, we have
A < 1 for A € o(A)\{1}. This is trivial. It is very interesting how to conquer this
drawback.

Note that if A is a stochastic matrix, then A™ is also stochastic for any positive
integer m. Therefore, we can apply Theorem 1 to A™ and obtain

’/\m - 'y(Am)‘ < T(Am) =1- tmce(Am) +(n— 1)7(Am). (1)

When A is a positive stochastic matrix, L.J. Cvetkovi¢ et al. [3] proved that the se-
quence {7y(A™)} converges to 0, and the radii of the corresponding circles r(A™) =
1 — trace(A™) 4+ (n — 1)y(A™) also tend to 0.

Theorem 2. (See [3, Theorem 3.5].) Let A = [a;;] € R™*™ be a positive stochastic matriz.
Then

Jm (7)o
and
lim r(Am) =0.

m—r oo
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