

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

The group of automorphisms of a zero-divisor graph based on rank one upper triangular matrices

LINEAR

lications

Dein Wong^{*,1}, Xiaobin Ma, Jinming Zhou²

Department of Mathematics, China University of Mining and Technology, Xuzhou 221116, China

A R T I C L E I N F O

Article history: Received 16 March 2014 Accepted 27 July 2014 Available online 14 August 2014 Submitted by R. Brualdi

MSC: 05C25 05C60 05E15 11T99

Keywords: Zero-divisor graph Graph automorphisms Transitivity

ABSTRACT

Let F_q be a finite field with q elements, $n(\geq 2)$ a positive integer, $\operatorname{Mat}_n(q)$ the set of all $n \times n$ matrices over F_q , R(n,q)the set of all rank one upper triangular matrices in $\operatorname{Mat}(n,q)$. The zero-divisor graph of $\operatorname{Mat}_n(q)$, written as $\Gamma(\operatorname{Mat}_n(q))$, is a directed graph with vertex set all nonzero zero-divisors of $\operatorname{Mat}_n(q)$, and there is a directed edge from a vertex A to a vertex B, written as $A \to B$, if and only if AB = 0. In this paper, we determine the automorphisms of an induced subgraph, written as $\Gamma(R(n,q))$, of $\Gamma(\operatorname{Mat}_n(q))$ with vertex set R(n,q). The main theorem of this article proves that a bijective map σ on R(n,q) with $n \geq 3$ is an automorphism of $\Gamma(R(n,q))$ if and only if

$$\sigma(X) = a_X P^{-1} [\pi(x_{ij})] P, \quad \forall X = [x_{ij}] \in R(n,q),$$

where $a_X \in F_q^*$ depends on X; P is an invertible upper triangular matrix; π is an automorphism of the field F_q , $[\pi(x_{ij})]$ denotes the matrix whose (i, j)-entry is $\pi(x_{ij})$.

@ 2014 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail address: wongdein@163.com (D. Wong).

 $^{^1\,}$ Supported by the National Natural Science Foundation of China (No. 11171343).

² Supported by NSF grant BK20140177 of Jiangsu Province.

1. Introduction

Let R be a commutative ring with identity 1. The zero-divisor graph of R, denoted by $\Gamma(R)$, is an undirected graph with vertices $Z^*(R)$, the set of nonzero zero-divisors of R. and for distinct elements $x, y \in Z^*(R)$, there is an edge joining x and y if and only if xy = 0. The concept of zero-divisor graph was first defined and studied for commutative rings by Beck in [7], and further studied by many authors (see, e.g., Akbari et al. [1]; Anderson et al. [2–5]; Axtell et al. [6]; Levy et al. [12]; Lucas [17]; Wu [24]). A lot of results about the diameter, the girth of $\Gamma(R)$ and so on have been obtained. The main idea of these researches is to study the interplay between the ring-theoretic properties of a commutative ring R and the graph-theoretic properties of $\Gamma(R)$. Redmond [20] extended the concept of zero-divisor graphs of commutative rings to zero-divisor graphs of noncommutative rings. Recently, zero-divisor graphs of matrix rings attracted a lot of attention. Akbari and Mohammadian [1] studied the problem of determining when the zero-divisor graphs of rings are isomorphic, given that the zero-divisor graphs of their matrix rings are isomorphic. I. Božić and Z. Petrović [8] further investigated the properties of (directed) zero-divisor graphs of matrix rings, studied the relation between the diameter of the zero-divisor graph of a commutative ring R and that of the matrix ring Mat_n(R). Li [13] proved that when studying $\Gamma(R)$, one can replace R with its total quotient ring, and they determined the girth of $\Gamma(\mathcal{T})$ of \mathcal{T} , triangular matrices over a commutative ring. The diameter, the girth and the bounds for the number of edges of $\Gamma(\mathcal{T})$ were given in [14].

Generally, determining the full automorphisms of a graph is an important however a difficult problem both in graph theory and in algebraic theory. Searching the literature, we find that little is known for the automorphisms of zero-divisor graphs of rings. In [3], And erson and Livingston have shown that $\operatorname{Aut}(\Gamma(Z_n))$ is a direct product of symmetric groups for $n \ge 4$ a nonprime integer. For the noncommutative case, it was shown in [11] that $\operatorname{Aut}(\Gamma(R))$ is isomorphic to the symmetric group of degree p+1, when $R = \operatorname{Mat}_2(Z_p)$ (p is a prime). S. Park and J. Han [19] proved that $\operatorname{Aut}(\Gamma(R)) \cong S_{q+1}$ for $R = \operatorname{Mat}_2(F_q)$ with F_q an arbitrary finite field. It is slightly regrettable that the authors of [11] and [19] only concerned with the special case when n = 2. Till now nothing is known about the automorphisms of the zero-divisor graphs of $n \times n$ matrices with $n \geq 3$. This observation motivates us to do some work on this topic. It seems much difficult to determine the full automorphisms of $\Gamma(\operatorname{Mat}_n(q))$, so we focus our attention on the subgraph of $\Gamma(\operatorname{Mat}_n(q))$ induced by all rank one upper triangular matrices. Let T(n,q) be the set of all $n \times n$ upper triangular matrices over F_q , R(n,q) the set of all rank one matrices in T(n,q). The subgraph of $\Gamma(\operatorname{Mat}_n(q))$ induced by all rank one upper triangular matrices is denoted by $\Gamma(R(n,q))$. The main theorem of this article proves that any graph automorphism of $\Gamma(R(n,q))$ with $n \geq 3$ can be decomposed into the product of an inner automorphism, a field automorphism and a local scalar multiplication.

For proving the main theorem of this paper we apply a technique from some recent papers which focused on determining the automorphisms of some graphs based on row Download English Version:

https://daneshyari.com/en/article/4599390

Download Persian Version:

https://daneshyari.com/article/4599390

Daneshyari.com