The skeleton of acyclic Birkhoff polytopes

Nair Abreu ${ }^{\text {a,1 }}$, Liliana Costa ${ }^{\text {a,b, }}$, Geir Dahl ${ }^{\text {c,*,2 }}$, Enide Martins ${ }^{\text {b,d, }, 1,2}$
${ }^{\text {a }}$ Programa de Engenharia de Produção, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
b CIDMA-Center for Research and Development in Mathematics and Applications, Portugal
${ }^{\text {c }}$ Department of Mathematics, University of Oslo, Norway
${ }^{\text {d }}$ Department of Mathematics, University of Aveiro, Portugal

A R T I C L E I N F O

Article history:

Received 2 January 2014
Accepted 14 May 2014
Available online 28 May 2014
Submitted by R. Brualdi

MSC:

15B51
05 C 05
52B12
Keywords:
Birkhoff polytope
Tree
Skeleton

Abstract

For a fixed tree T with n vertices the corresponding acyclic Birkhoff polytope $\Omega_{n}(T)$ consists of doubly stochastic matrices having support in positions specified by T. This is a face of the Birkhoff polytope Ω_{n} (which consists of all $n \times n$ doubly stochastic matrices). The skeleton of $\Omega_{n}(T)$ is the graph where vertices and edges correspond to those of $\Omega_{n}(T)$, and we investigate some properties of this graph. In particular, we characterize adjacency of pairs of vertices, compute the minimum degree of a vertex and show some properties of the maximum degree of a vertex in the skeleton. We also determine the maximum degree for certain classes of trees, including paths, stars and caterpillars.

© 2014 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let $T:=T(V(T), E(T))$ be a tree with the vertex set $V:=V(T)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and the set of edges $E:=E(T)=\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}$. For each $k, 1 \leq k \leq n-1$, the edge $e_{k}=\left\{v_{i}, v_{j}\right\}$ is simply denoted by $v_{i} v_{j}$ or by the indices of its end vertices, that is, $e_{k}=i j$ and in this case, we say that v_{i} is adjacent to v_{j}. The neighbors of v_{k} are its adjacent vertices and the set of neighbors of v_{k}, called the neighborhood of v_{k}, is denoted by $N_{T}\left(v_{k}\right)$. The degree of a vertex v_{k} is $d\left(v_{k}\right)=d_{v_{k}}=\left|N_{T}\left(v_{k}\right)\right|$. Moreover, $E\left(v_{k}\right)$ is the set of edges in T incident to v_{k}. A pendant edge has an end vertex with degree 1 which is known as a pendant vertex or a leaf of the tree. A vertex in T which is not a leaf is called an inner vertex. The path with n vertices, P_{n}, is a tree in which every vertex has degree 2 except the terminal vertices. The length of P_{n}, denoted by $\left|E\left(P_{n}\right)\right|$, is its number of edges. For more basic definitions and notations of graphs (particularly of trees), see [3].

Consider a Euclidean space S with inner product $\langle\cdot, \cdot\rangle$, and let C be a convex set in S. A subset $F \subseteq C$ is a face of C if F is a convex set and satisfies the following property: whenever $x, y \in C$ and $(1-\lambda) x+\lambda y \in F$ for some $0<\lambda<1$, then $x, y \in F$. A halfspace is a set $H^{-}=\{x \in S:\langle a, x\rangle \leq b\}$ where $a \in S$ is nonzero and $b \in \mathbb{R}$. Then $H=\{x \in S:\langle a, x\rangle=b\}$ is the corresponding hyperplane (an affine set of dimension $\operatorname{dim} S-1$). A polyhedron in S is the intersection of a finite number of halfspaces. If $C \subseteq H^{-}$and $H \cap C$ is nonempty, we call H a supporting hyperplane of C. An exposed face of C is the intersection of C and one of its supporting hyperplanes. In general every exposed face is a face, but the converse may not hold. For polyhedra, however, faces and exposed faces coincide. Note that the support of a matrix A is the set of the positions of the nonzero entries of A. For more details concerning convex analysis (especially polyhedral theory), see [14,17].

A real $n \times n$ matrix is doubly stochastic if it is a nonnegative matrix and each row and column sum is 1 (see [4,7-9]). The set of all doubly stochastic matrices of order n is denoted by Ω_{n}, and a classical result due to Birkhoff and von Neumann [2,16] says that Ω_{n} is a polytope whose extreme points are the permutation matrices (see also [7]). There is a correspondence between doubly stochastic and doubly sub-stochastic matrices (i.e., nonnegative matrices where each row and column sum is at most 1) and matchings in bipartite graphs and related polytopes. The polytope Ω_{n} is investigated in detail in [4-6], and different subpolytopes are discussed in e.g. [8-10]. The recent paper [1] treats general properties of fractional perfect matching polytopes in detail, including the facial structure. The present paper, however, can be viewed as a study of matching (not perfect) polytopes associated with trees, and with focus on minimum and maximum degrees.

Let T be a tree with n vertices. The acyclic Birkhoff polytope, $\Omega_{n}(T)$, introduced in [8], is the set of doubly stochastic matrices A such that each positive entry of A is either on the diagonal or in a position that corresponds to an edge of T, i.e., in the positions (i, j) and (j, i), where $i j$ is an edge of T. The diagonal entries of A correspond to the vertices of T. It was shown in [8] that each matrix $A \in \Omega_{n}(T)$ is symmetric.

https://daneshyari.com/en/article/4599396

Download Persian Version:

https://daneshyari.com/article/4599396

Daneshyari.com

[^0]: * Corresponding author.
 ${ }^{1}$ Enide Martins and Liliana Costa were supported by Portuguese funds through the CIDMA-Center for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology ("FCT-Fundação para a Ciência e a Tecnologia"), within Project PEstOE/MAT/UI4106/2014. Nair Abreu and Liliana Costa are also indebted to the Brazilian Council for Scientific and Technological Development for support received from them, 160329/2012-4 and 300563/94-9 (NV).
 ${ }^{2}$ Enide Martins and Geir Dahl are grateful for the hospitality of PEP/COPPE, Universidade Federal do Rio de Janeiro, where this research was initiated, and also Enide Martins was partly supported by Project CNPq 476363/2012-8.

