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Given a simple graph G, let X be the random variable which 
is the determinant of the (oriented) adjacency matrix of an 
orientation of G. It is known that the expectation E(X) equals 
the number of perfect matchings of G. In this paper we give a 
graphical interpretation of the variance Var(X). We also give 
complete determinantal profiles of several classes of graphs, 
including wheels, fans, and general books.
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1. Introduction

1.1. Determinants of orientations

Let G = (V, E) be a simple graph with V = {v1, v2, . . . , vn} and D be an orientation 
of G. The (oriented) adjacency matrix of D is a square matrix whose rows and columns 
are both indexed by the vertices v1, v2, . . . , vn, and the (i, j)-entry is 1, −1 or 0 if there 
is an edge oriented from vi to vj , from vj to vi, or no edge in between, respectively. For 
simplicity, D = (dij) is used to denote both an orientation and its adjacency matrix.

A perfect matching, or 1-factor, of G is a set of edges in which each vertex of G belongs 
to exactly one edge. Denote by M(G) the number of 1-factors of G.

Suppose that each edge of G is independently oriented either way with probability 
1
2 . For each orientation of G we have a square matrix D, hence a determinant det(D). 
Let X := det(D) be a random variable. There is a nice graphical interpretation of the 
expectation E(X).

Theorem 1.1. (See [1], Exercise 10.10, page 466.) We have

E(X) = M(G).

In other words, the “average determinant” of all orientations equals the number of 
perfect matchings. Hence it is natural to find an interpretation of the variance Var(X)
in terms of graph parameters. A 2-factor of a graph G is a spanning 2-regular subgraph 
of G. A deformed 2-factor of G is a spanning subgraph of G where each component is 
either a cycle or an edge. Note that a cycle consists of at least three vertices. We say 
that a deformed 2-factor is special if it contains at least one cycle and each cycle is of 
even length. Let H(G) denote the set of special deformed 2-factors of G.

Let C(G) be a maximum set of vertex-disjoint cycles of a graph G and let c(G) :=
|C(G)|. Hence for H ∈ H(G), c(H) is the number of cycles of H.

The main result of this paper is the following interpretation of Var(X).

Theorem 1.2. We have

Var(X) =
∑

H∈H(G)

6c(H) − 2c(H).

A deformed 2-factor is also called a linear subgraph in the literature [3]. We use the 
name deformed 2-factor to emphasize that E(X) involves 1-factors while Var(X) involves 
a variation of 2-factors.

We illustrate the theorem by an example to show that for nice graphs our result can 
reduce the computation of Var(X) significantly.

Example. Let Pn denote the path of n vertices. Consider the graph G = P2�P4, the 
Cartesian product of P2 and P4. Exhausting computer check shows that among all 
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