Variances and determinantal profiles of orientations ${ }^{\text {T}}$

Huilan Chang ${ }^{\text {a,* }}$, Sen-Peng Eu ${ }^{\text {b }}$, Pei-Lan Yen ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Applied Mathematics, National University of Kaohsiung,
Kaohsiung 811, Taiwan, ROC
${ }^{\text {b }}$ Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan, ROC
${ }^{\text {c }}$ Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC

A R T I C L E I N F O

Article history:

Received 18 March 2013
Accepted 14 May 2014
Available online 2 June 2014
Submitted by R. Brualdi

MSC:

05C50
05C20

A B S T R A C T

Given a simple graph G, let X be the random variable which is the determinant of the (oriented) adjacency matrix of an orientation of G. It is known that the expectation $\mathrm{E}(X)$ equals the number of perfect matchings of G. In this paper we give a graphical interpretation of the variance $\operatorname{Var}(X)$. We also give complete determinantal profiles of several classes of graphs, including wheels, fans, and general books.
© 2014 Elsevier Inc. All rights reserved.

Keywords:

Variance
Pfaffian
Determinant
Orientation

[^0]
1. Introduction

1.1. Determinants of orientations

Let $G=(V, E)$ be a simple graph with $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and D be an orientation of G. The (oriented) adjacency matrix of D is a square matrix whose rows and columns are both indexed by the vertices $v_{1}, v_{2}, \ldots, v_{n}$, and the (i, j)-entry is $1,-1$ or 0 if there is an edge oriented from v_{i} to v_{j}, from v_{j} to v_{i}, or no edge in between, respectively. For simplicity, $D=\left(d_{i j}\right)$ is used to denote both an orientation and its adjacency matrix.

A perfect matching, or 1-factor, of G is a set of edges in which each vertex of G belongs to exactly one edge. Denote by $M(G)$ the number of 1-factors of G.

Suppose that each edge of G is independently oriented either way with probability $\frac{1}{2}$. For each orientation of G we have a square matrix D, hence a determinant $\operatorname{det}(D)$. Let $X:=\operatorname{det}(D)$ be a random variable. There is a nice graphical interpretation of the expectation $\mathrm{E}(X)$.

Theorem 1.1. (See [1], Exercise 10.10, page 466.) We have

$$
\mathrm{E}(X)=M(G)
$$

In other words, the "average determinant" of all orientations equals the number of perfect matchings. Hence it is natural to find an interpretation of the variance $\operatorname{Var}(X)$ in terms of graph parameters. A 2 -factor of a graph G is a spanning 2 -regular subgraph of G. A deformed 2-factor of G is a spanning subgraph of G where each component is either a cycle or an edge. Note that a cycle consists of at least three vertices. We say that a deformed 2 -factor is special if it contains at least one cycle and each cycle is of even length. Let $\mathcal{H}(G)$ denote the set of special deformed 2-factors of G.

Let $\mathcal{C}(G)$ be a maximum set of vertex-disjoint cycles of a graph G and let $c(G):=$ $|\mathcal{C}(G)|$. Hence for $H \in \mathcal{H}(G), c(H)$ is the number of cycles of H.

The main result of this paper is the following interpretation of $\operatorname{Var}(X)$.

Theorem 1.2. We have

$$
\operatorname{Var}(X)=\sum_{H \in \mathcal{H}(G)} 6^{c(H)}-2^{c(H)}
$$

A deformed 2-factor is also called a linear subgraph in the literature [3]. We use the name deformed 2-factor to emphasize that $\mathrm{E}(X)$ involves 1-factors while $\operatorname{Var}(X)$ involves a variation of 2 -factors.

We illustrate the theorem by an example to show that for nice graphs our result can reduce the computation of $\operatorname{Var}(X)$ significantly.

Example. Let P_{n} denote the path of n vertices. Consider the graph $G=P_{2} \square P_{4}$, the Cartesian product of P_{2} and P_{4}. Exhausting computer check shows that among all

https://daneshyari.com/en/article/4599406

Download Persian Version:

https://daneshyari.com/article/4599406

Daneshyari.com

[^0]: 紟 Research partially supported by NSC grants 100-2115-M-390-004-MY2 (H. Chang), 101-2115-M-390-004MY3 (S.-P. Eu), NSC 100-2811-M-390-007 (P.-L. Yen).

 * Corresponding author.

 E-mail addresses: huilan0102@gmail.com (H. Chang), speu@math.ntnu.edu.tw (S.-P. Eu), yenpl.tw@gmail.com (P.-L. Yen).

