

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Some ways of constructing Furuta-type inequalities

CrossMark

LINEAR

lications

Shuhei Wada

Department of Information and Computer Engineering, Kisarazu National College of Technology, Kisarazu, Chiba 292-0041, Japan

ARTICLE INFO

Article history: Received 31 January 2014 Accepted 19 May 2014 Available online 2 June 2014 Submitted by P. Semrl

MSC: primary 47A63 secondary 47A64

Keywords: Furuta inequality Operator monotone Operator mean Ando-Hiai inequality

ABSTRACT

Let σ_h be an operator mean associated with an operator monotone function h and let A, B be positive operators. We investigate the following Furuta-type inequality: For some fixed continuous function h,

$$A \ge B > 0 \quad \Rightarrow \quad A^{-r} \sigma_{\varphi_r} X_h^{-r} \le B \quad (r \ge 1),$$

where X_h is the positive solution of $h(X) = B^{-1}$. The map $(h,r) \mapsto \varphi_r$ plays a central role in constructing a Furuta-type inequality, similar to the role of the map $(p,r) \mapsto \frac{r+1}{p+r}$ in the following part of the Furuta inequality: $A \ge B > 0, p, r \ge 1 \Rightarrow (B^{\frac{r}{2}}A^pB^{\frac{r}{2}})^{\frac{1+r}{p+r}} \ge (B^{p+r})^{\frac{1+r}{p+r}}$. We obtain this map $(h,r) \mapsto \varphi_r$ from the following Ando–Hiai type inequality:

 $A, B > 0, \quad A\sigma_h B \le 1 \quad \Rightarrow \quad A^r \sigma_h B^r \le 1 \quad (r \ge 1).$

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{H} be a complex Hilbert space with inner product $\langle \cdot | \cdot \rangle$. Here, a bounded linear operator A is said to be positive semidefinite (denoted by $A \ge 0$) if $\langle Ax | x \rangle \ge 0$ for all

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2014.05.033} 0024-3795 \end{tabular} 0214$ Elsevier Inc. All rights reserved.

E-mail address: wada@j.kisarazu.ac.jp.

 $x \in \mathcal{H}$ and $A \geq B$ means that A - B is positive semidefinite. Moreover, A is said to be positive definite (denoted by A > 0) if A is positive semidefinite and invertible [3].

In [6], Furuta proved the following inequality: If $A \ge B \ge 0$, then for each $r \ge 0$,

$$A^{\frac{p+r}{q}} \ge \left(A^{\frac{r}{2}}B^{p}A^{\frac{r}{2}}\right)^{\frac{1}{q}} \tag{1.1}$$

and

$$\left(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}}\right)^{\frac{1}{q}} \ge B^{\frac{p+r}{q}} \tag{1.2}$$

hold for p and q such that $p \ge 0$ and $q \ge 1$ with $(1+r)q \ge p+r$. This inequality is called the Furuta inequality and has been widely investigated in the literature. Tanahashi [11] showed that for fixed p, r, the best lower bound of $q \ge 1$ satisfying (1.1) or (1.2) is $\frac{p+r}{1+r}$. Thus it follows from the Löwner–Heinz inequality [7,8] that the Furuta inequality is essential in the case when $p, r \ge 1$ and $q = \frac{p+r}{1+r}$. So we can assume that when we discuss the Furuta inequality, we mean this mapping: $(p,r) \mapsto \frac{1+r}{p+r}$. In [12], Uchiyama used his product theorem to establish some operator inequalities which contain the Furuta inequality.

A continuous function f from $[0, \infty)$ into itself is said to be operator monotone on $[0, \infty)$ if for two positive semidefinite operators A and B, the inequality $A \ge B$ implies $f(A) \ge f(B)$. An operator monotone function f on $[0, \infty)$ is said to be normal if f(1) = 1. Throughout this paper, OM^1_+ stands for the set of normalized operator monotone functions from $[0, \infty)$ into itself. Let A, B be positive invertible operators on \mathcal{H} . An operator mean $A\sigma B$ associated with $f \in OM^1_+$ is defined as

$$A\sigma B = A^{\frac{1}{2}} f\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}}$$

and its properties were studied in [4]. In particular, the weighted geometric mean $\#_{\alpha}$ associated with $f(t) = t^{\alpha}$ ($0 \le \alpha \le 1$) has often been studied separately from the point of view of functional analysis, statistics, quantum information, or other fields. Ando and Hiai [2] proved the following theorem concerning weighted geometric means: If A, B are positive invertible operators with $A\#_{\alpha}B \le 1$, then $A^r\#_{\alpha}B^r \le 1$ for all $r \ge 1$. This theorem is referred to as the Ando-Hiai inequality. In [5], Fujii and Kamei showed that the Ando-Hiai inequality implies the following essential part of the Furuta inequality:

$$A \ge B > 0 \quad \Rightarrow \quad B^{p} \#_{\frac{p-1}{p+r}} A^{-r} \left(= A^{-r} \#_{\frac{1+r}{p+r}} B^{p} \right) \le B \quad (r, p \ge 1).$$
(1.3)

In the present paper, we study a way to construct the following Furuta-type inequality:

$$A \ge B > 0 \quad \Rightarrow \quad X^{-r} \sigma_{\varphi_r} A^{-r} \le B \quad (r \ge 1), \tag{1.4}$$

where X is the positive solution of $h(X) = B^{-1}$ for some function h. From the following Ando-Hiai type inequality:

Download English Version:

https://daneshyari.com/en/article/4599410

Download Persian Version:

https://daneshyari.com/article/4599410

Daneshyari.com