

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

A construction of regular magic squares of odd order

C.-Y. Jean Chan^a, Meera G. Mainkar^a, Sivaram K. Narayan^a, Jordan D. Webster^{b,*}

 $^{\mathrm{a}}$ Central Michigan University, Mount Pleasant, MI 48859, USA

ARTICLE INFO

Article history: Received 9 July 2013 Accepted 18 May 2014 Available online 2 June 2014 Submitted by R. Brualdi

MSC: 05B15 05B20 11C20 15A03 15A18

15B36

Keywords:
Magic squares
Regular magic squares
Eigenvalues
Centroskew matrices
Circulant matrices

ABSTRACT

A magic square is an $n \times n$ array of numbers whose rows, columns, and the two diagonals sum to μ . A regular magic square satisfies the condition that the entries symmetrically placed with respect to the center sum to $\frac{2\mu}{n}$. Using circulant matrices we describe a construction of regular classical magic squares that are nonsingular for all odd orders. A similar construction is given that produces regular classical magic squares that are singular for odd composite orders. This paper is an extension of [3].

© 2014 Elsevier Inc. All rights reserved.

E-mail addresses: chanlcj@cmich.edu (C.-Y.J. Chan), mainklm@cmich.edu (M.G. Mainkar), sivaram.narayan@cmich.edu (S.K. Narayan), jdwebster@midmich.edu (J.D. Webster).

^b Mid Michigan Community College, Harrison, MI 48625, USA

^{*} Corresponding author.

1. Introduction

A magic square M is an $n \times n$ matrix in which entries along each row, each column, the main diagonal, and the cross diagonal add to the same value μ called the magic sum of M. If the entries of M are integers from 1 through n^2 where each number appears once then $\mu = \frac{n(n^2+1)}{2}$ and M is called a classical magic square (or natural magic square).

A magic square $M=[m_{i,j}]$ is said to be regular (also called associated or symmetrical) if the sum of the entries $m_{i,j}$ and $m_{n+1-i,n+1-j}$ that are symmetrically placed across the center of the square is equal to the number $\frac{2\mu}{n}$. In the case of classical magic square this sum is n^2+1 .

Dürer's magic square

is an example of a regular magic square [7]. In [5] Mattingly proved that every even order regular magic square is singular (that is, determinant of the magic square is zero). In [4] Loly et al. found that not all of the 5×5 regular classical magic squares are nonsingular. In [3] an example of a 9×9 regular classical magic square that is singular is given.

As a result the question of when an odd order regular magic square is singular or nonsingular was addressed in [3]. A necessary and sufficient condition for an odd order regular magic square to be nonsingular was given. In addition a method to construct nonsingular regular classical magic squares using circulant matrices is given when the order of the magic square is an odd prime power [3].

In this paper we extend this construction method of regular classical magic squares to all odd orders. Moreover, we show that this construction method will produce a singular or nonsingular regular classical magic square based on the choice of the first row of the circulant matrix used in the construction.

2. A construction of regular magic squares

In this section we present the method of construction used in [3] to produce regular classical magic squares.

Let E denote the matrix of all 1's for its entries and e denote the column vector of all 1's. Since $Me = \mu e$ we observe that the magic sum μ is an eigenvalue of magic square M. The following theorem is found in [1].

Theorem 2.1. If M is an $n \times n$ magic square and ρ is a complex number, then $M + \rho E$ has the same eigenvalues of M except that μ is replaced with $\mu + \rho n$.

Download English Version:

https://daneshyari.com/en/article/4599412

Download Persian Version:

https://daneshyari.com/article/4599412

Daneshyari.com