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This paper finds a new and improved geometric bound for the 
second largest eigenvalue of a random walk Markov chain on 
an undirected graph.
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1. Introduction

Let X be a finite set and P = (Pi,j) a transition matrix for an irreducible and reversible 
Markov chain, with respect to the probability π = (πi) on X; i.e.

∑
i∈X

πi = 1.

Then define the symmetric (due to reversibility) Q = (Qi,j), via

Qi,j = πiPi,j = πjPj,i for all i, j ∈ X.
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An irreducible reversible Markov chain can be derived from an irreducible non-negative 
symmetric matrix A = (aij). Define

ri =
n∑

j=1
aij , R = diag(r1, . . . , rn) and P = R−1A.

Then P is a stochastic matrix; i.e.

n∑
j=1

Pi,j = 1 for all i,

and if πi = r−1ri where

r =
n∑

i=1
ri,

then it follows that πiPi,j = Pj,iπj for all i, j.
To derive an upper bound for β1, the second largest eigenvalue of P , [1] introduce the 

notion of a set of paths Γ which joins each pair of distinct elements of X. Let γij denote 
the path linking i and j, for which there is positive probability the chain can move along; 
the existence of which is guaranteed due to the irreducibility of the chain. So

Γ = {γij : ∀i �= j}.

Then [1] shows that

β1 ≤ 1 − 1
K

,

where, for e = (e−, e+) with e−, e+ ∈ X and e− �= e+,

K = max
e

γ(e)
Q(e) ,

Q(e) = Qe−,e+ , and

γ(e) =
∑
γij�e

|γij |πiπj ,

with |γij | denoting the length of the path γij. The superiority of this bound over alter-
natives, such as Cheeger bounds, is shown in [2].

In particular, [1] consider the Markov chain which is a random walk on the undirected 
graph G = (X, E), and G is connected, has no loops or multiple edges. Following the 
same notation as [1] we have
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