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1. Introduction

Let X be a finite set and P = (P; ;) a transition matrix for an irreducible and reversible

Markov chain, with respect to the probability = = (m;) on X; i.e.

Zﬂ'i:L

i€X

Then define the symmetric (due to reversibility) Q = (Q; ;), via

QiJ’ = Fipi’j = 7Tij7i for all 1,7 € X.
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An irreducible reversible Markov chain can be derived from an irreducible non-negative
symmetric matrix A = (a;;). Define

5 :Zaij’ R = diag(ry,...,7,) and P =R ‘A,
j=1
Then P is a stochastic matrix; i.e.
n
ZPM =1 for all i,
j=1

and if m; = r~'r; where

n
r= E Ty
i=1

then it follows that m; P; ; = P;;m; for all 4, j.

To derive an upper bound for /31, the second largest eigenvalue of P, [1] introduce the
notion of a set of paths I" which joins each pair of distinct elements of X. Let v;; denote
the path linking 7 and j, for which there is positive probability the chain can move along;
the existence of which is guaranteed due to the irreducibility of the chain. So

I'={vij :Vi#j}.

Then [1] shows that

1
ﬁlgl_E7

where, for e = (¢7,e") with e”,eT € X and e~ # eT,

7(e)

K = max —=

e Qle)’

ye) = > |yjlmim;,

Yij D€

with |v;;| denoting the length of the path ~;;. The superiority of this bound over alter-
natives, such as Cheeger bounds, is shown in [2].

In particular, [1] consider the Markov chain which is a random walk on the undirected
graph G = (X, E), and G is connected, has no loops or multiple edges. Following the
same notation as [1] we have
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