

A note on matrices with prescribed off-diagonal submatrix and characteristic polynomial $\stackrel{\bigstar}{\approx}$

Alberto Borobia*, Roberto Canogar

Dpto. Matemáticas, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain

ARTICLE INFO

Article history: Received 5 September 2013 Accepted 4 June 2014 Available online 20 June 2014 Submitted by R. Brualdi

MSC: 15A83

Keywords: Matrix completions Inverse eigenvalue problems Characteristic polynomial

ABSTRACT

Let $A \in \mathbb{F}^{q \times p}$ be a nonzero matrix over a field \mathbb{F} , and let f be any monic polynomial of degree n = p+q with coefficients in \mathbb{F} . A completion problem proposed and solved by de Oliveira asks for the existence of a matrix of order n with characteristic polynomial f and such that its $q \times p$ submatrix in the left down corner is equal to A. Let $C(f) \in \mathbb{F}^{n \times n}$ be the companion matrix of f. We will construct a matrix $X_A \in \mathbb{F}^{n \times n}$ (which depends exclusively on A) such that $X_A^{-1}C(f)X_A$ is a closed form solution of this completion problem.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let $\mathbb F$ be a field and consider the 2×2 block matrix

$$\begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} \quad \text{with } M_{11} \in \mathbb{F}^{p \times p} \text{ and } M_{22} \in \mathbb{F}^{q \times q}.$$

$$\tag{1}$$

^{*} Supported by the Spanish Ministerio de Ciencia y Tecnología grant MTM2009-09180.

* Corresponding author.

E-mail addresses: aborobia@mat.uned.es (A. Borobia), rcanogar@mat.uned.es (R. Canogar).

In the seventies de Oliveira posed the problem of determining all possible spectra or characteristic polynomials or invariant polynomials of $[M_{ij}]_{i,j=1}^2$ when some of the blocks are prescribed and the rest of the blocks are free to take any value. Summaries of solved cases can be found in [1,2,4].

In this work we are interested in the particular problem of determining all possible characteristic polynomials of $[M_{ij}]_{i,j=1}^2$ when only M_{21} is prescribed. Note that if M_{21} is the zero matrix then the solution is trivial, namely, a polynomial f of degree p + q is a possible characteristic polynomial if and only if f has a divisor of degree p.

On the other hand, if M_{21} is a nonzero matrix then de Oliveira [3] proved that for any polynomial f of degree p + q there exist some $M_{11} \in \mathbb{F}^{p \times p}$, $M_{12} \in \mathbb{F}^{p \times q}$ and $M_{22} \in \mathbb{F}^{q \times q}$ such that f is the characteristic polynomial of $[M_{ij}]_{i,j=1}^2$. And Ikramov and Chugunov [4] obtained a finite step algorithm to construct concrete M_{11} , M_{12} and M_{22} . In Lemma 1.1 and Theorem 1.1 below we develop a construction that provides a closed form solution. Before we introduce some useful notation.

Definition 1.1. We say that P is a **partially prescribed** matrix over a field \mathbb{F} if some of the entries of P are known elements of \mathbb{F} and the rest of the entries of P are unknown. Each unknown entry of P will be denoted by \Box . A **completion** of P is any matrix obtained from P by replacing each unknown entry \Box by an element of \mathbb{F} .

For instance, if

$$P = \begin{bmatrix} 3 & \Box & 5 \\ \Box & \Box & 7 \\ 2 & \Box & \Box \end{bmatrix}, \qquad Q = \begin{bmatrix} 3 & 4 & 5 \\ 0 & 1 & 7 \\ 2 & 9 & 6 \end{bmatrix} \quad \text{and} \quad R = \begin{bmatrix} 3 & -3 & 5 \\ 1 & 2 & 7 \\ 2 & 8 & 4 \end{bmatrix}$$

then Q and R are two different completions of the partially prescribed matrix P.

Lemma 1.1. Let \mathbb{F} be a field and consider the $(p+q) \times (p+q)$ partially prescribed matrix P over \mathbb{F} which is given by

$$P = \begin{bmatrix} \Box & \Box \\ A & \Box \end{bmatrix} = \begin{bmatrix} \Box & \cdots & \Box & \Box & \cdots & \Box \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \hline a_{11} & \cdots & a_{1p} & \Box & \cdots & \Box \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{q1} & \cdots & a_{qp} & \Box & \cdots & \Box \end{bmatrix}$$

where $A \in \mathbb{F}^{q \times p}$ and $a_{1p} = 1$, (2)

and let

Download English Version:

https://daneshyari.com/en/article/4599429

Download Persian Version:

https://daneshyari.com/article/4599429

Daneshyari.com