# A note on matrices with prescribed off-diagonal submatrix and characteristic polynomial ${ }^{\text {di }}$ 

Alberto Borobia*, Roberto Canogar<br>Dpto. Matemáticas, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain

## A R T I C L E I N F O

## Article history:

Received 5 September 2013
Accepted 4 June 2014
Available online 20 June 2014
Submitted by R. Brualdi

## MSC:

15A83

## Keywords:

Matrix completions
Inverse eigenvalue problems
Characteristic polynomial


#### Abstract

Let $A \in \mathbb{F}^{q \times p}$ be a nonzero matrix over a field $\mathbb{F}$, and let $f$ be any monic polynomial of degree $n=p+q$ with coefficients in $\mathbb{F}$. A completion problem proposed and solved by de Oliveira asks for the existence of a matrix of order $n$ with characteristic polynomial $f$ and such that its $q \times p$ submatrix in the left down corner is equal to $A$. Let $C(f) \in \mathbb{F}^{n \times n}$ be the companion matrix of $f$. We will construct a matrix $X_{A} \in \mathbb{F}^{n \times n}$ (which depends exclusively on $A$ ) such that $X_{A}^{-1} C(f) X_{A}$ is a closed form solution of this completion problem.


© 2014 Elsevier Inc. All rights reserved.

## 1. Introduction

Let $\mathbb{F}$ be a field and consider the $2 \times 2$ block matrix

$$
\left[\begin{array}{ll}
M_{11} & M_{12}  \tag{1}\\
M_{21} & M_{22}
\end{array}\right] \quad \text { with } M_{11} \in \mathbb{F}^{p \times p} \text { and } M_{22} \in \mathbb{F}^{q \times q} \text {. }
$$

[^0]In the seventies de Oliveira posed the problem of determining all possible spectra or characteristic polynomials or invariant polynomials of $\left[M_{i j}\right]_{i, j=1}^{2}$ when some of the blocks are prescribed and the rest of the blocks are free to take any value. Summaries of solved cases can be found in $[1,2,4]$.

In this work we are interested in the particular problem of determining all possible characteristic polynomials of $\left[M_{i j}\right]_{i, j=1}^{2}$ when only $M_{21}$ is prescribed. Note that if $M_{21}$ is the zero matrix then the solution is trivial, namely, a polynomial $f$ of degree $p+q$ is a possible characteristic polynomial if and only if $f$ has a divisor of degree $p$.

On the other hand, if $M_{21}$ is a nonzero matrix then de Oliveira [3] proved that for any polynomial $f$ of degree $p+q$ there exist some $M_{11} \in \mathbb{F}^{p \times p}, M_{12} \in \mathbb{F}^{p \times q}$ and $M_{22} \in \mathbb{F}^{q \times q}$ such that $f$ is the characteristic polynomial of $\left[M_{i j}\right]_{i, j=1}^{2}$. And Ikramov and Chugunov [4] obtained a finite step algorithm to construct concrete $M_{11}, M_{12}$ and $M_{22}$. In Lemma 1.1 and Theorem 1.1 below we develop a construction that provides a closed form solution. Before we introduce some useful notation.

Definition 1.1. We say that $P$ is a partially prescribed matrix over a field $\mathbb{F}$ if some of the entries of $P$ are known elements of $\mathbb{F}$ and the rest of the entries of $P$ are unknown. Each unknown entry of $P$ will be denoted by $\square$. A completion of $P$ is any matrix obtained from $P$ by replacing each unknown entry $\square$ by an element of $\mathbb{F}$.

For instance, if

$$
P=\left[\begin{array}{ccc}
3 & \square & 5 \\
\square & \square & 7 \\
2 & \square & \square
\end{array}\right], \quad Q=\left[\begin{array}{ccc}
3 & 4 & 5 \\
0 & 1 & 7 \\
2 & 9 & 6
\end{array}\right] \quad \text { and } \quad R=\left[\begin{array}{ccc}
3 & -3 & 5 \\
1 & 2 & 7 \\
2 & 8 & 4
\end{array}\right]
$$

then $Q$ and $R$ are two different completions of the partially prescribed matrix $P$.

Lemma 1.1. Let $\mathbb{F}$ be a field and consider the $(p+q) \times(p+q)$ partially prescribed matrix $P$ over $\mathbb{F}$ which is given by

$$
P=\left[\begin{array}{cc}
\square & \square  \tag{2}\\
A & \square
\end{array}\right]=\left[\begin{array}{ccc|ccc}
\square & \cdots & \square & \square & \cdots & \square \\
\vdots & \ddots & \vdots & \vdots & & \vdots \\
\square & \cdots & \square & \square & \cdots & \square \\
\hline a_{11} & \cdots & a_{1 p} & \square & \cdots & \square \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{q 1} & \cdots & a_{q p} & \square & \cdots & \square
\end{array}\right] \quad \text { where } A \in \mathbb{F}^{q \times p} \text { and } a_{1 p}=1 \text {, }
$$

and let

# https://daneshyari.com/en/article/4599429 

Download Persian Version:

## https://daneshyari.com/article/4599429

## Daneshyari.com


[^0]:    4) Supported by the Spanish Ministerio de Ciencia y Tecnología grant MTM2009-09180.

    * Corresponding author.

    E-mail addresses: aborobia@mat.uned.es (A. Borobia), rcanogar@mat.uned.es (R. Canogar).

