

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

On the term rank partition $\stackrel{\diamond}{\approx}$

Rosário Fernandes^{b,*}, Henrique F. da Cruz^a

 ^b Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
^a Departamento de Matemática da Universidade da Beira Interior, Rua Marquês D'Avila e Bolama, 6201-001 Covilhã, Portugal

ARTICLE INFO

Article history: Received 14 February 2014 Accepted 26 May 2014 Available online 20 June 2014 Submitted by R. Brualdi

MSC: 05A15 05C50 05D15

Keywords: t-Term rank Interchange Row sum vector Column sum vector

ABSTRACT

For each positive integer t, the t-term rank of a (0, 1)-matrix A is the maximum number of 1's in A with at most one 1 in each column and at most t 1's in each row. In [5] R. Brualdi et al. (2012) stated several results for the t-term rank, including a formula for the maximum t-term rank over a nonempty class of (0, 1)-matrices with the same row sum and column sum vectors. In this paper we state more results for the t-term rank, Using these results we define and we study the term rank partition. We also deduce a formula for the minimal t-term rank over a nonempty class of (0, 1)-matrices with the same row sum and column sum vectors.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let A be an m-by-n, (0, 1)-matrix. Let t be a positive integer. Motivated by the study of combinatorial batch codes (see [4,7,9]), the authors of [5] defined the t-term rank of A,

* Corresponding author.

http://dx.doi.org/10.1016/j.laa.2014.05.045 0024-3795/© 2014 Elsevier Inc. All rights reserved.

LINEAR

lications

 $[\]dot{a}$ This work was partially supported by Fundação para a Ciência e Tecnologia and was done within the activities of the Centro de Estruturas Lineares e Combinatórias.

E-mail addresses: mrff@fct.unl.pt (R. Fernandes), hcruz@ubi.pt (H. F. da Cruz).

denoted $\rho_t(A)$, as the maximum number of 1's in A with at most one 1 in each column and at most t 1's in each row.

When t = 1, we have the well-known term rank of A, denoted $\rho(A)$. By the König–Egerváry theorem (see [3], p. 6) $\rho(A)$ equals the minimum number of lines that cover all the 1's of A:

 $\rho(A) = \min\{e + f : \exists a \text{ cover of } A \text{ with } e \text{ rows and } f \text{ columns}\}.$

In [5] the authors established a generalization of this theorem:

Proposition 1.1. Let A be an m-by-n, (0,1)-matrix and let t be a positive integer. Then

 $\rho_t(A) = \min\{te + f: \exists a \text{ cover of } A \text{ with } e \text{ rows and } f \text{ columns}\}. \square$

Let *L* be a subset of $\{1, \ldots, m\}$ and *H* be a subset of $\{1, \ldots, n\}$. We denote by A[L; H] the |L|-by-|H| submatrix of *A* determined by the rows with index in *L* and the columns with index in *H*. If $L = \{a_1, \ldots, a_p\}$ and $H = \{b_1, \ldots, b_v\}$ then, sometimes we will write $A[a_1, \ldots, a_p; b_1, \ldots, b_v]$ instead of A[L; H]. When $L = \{1, \ldots, m\}$, we write $A[\star; H]$ instead of A[L; H].

The *t*-term rank of A can be obtained using the rank of the matroid union (see [1,5,6, 8]) of t copies of M(A), the matroid on $\{1, 2, ..., n\}$ (n is the number of columns of A), where the independent sets of M(A) are those $K \subseteq \{1, ..., n\}$ such that, the m-by-|K| submatrix of A, A[*;K], verify $\rho(A[*;K]) = |K|$. Such matroids are transversal matroids and the rank of M(A) is $\rho(A)$. The matroid union of t copies of M(A), this is, the transversal matroid $M(A^{(t)})$ with

$$M(A^{(t)}) = M(A) \lor \ldots \lor M(A) \quad (t \text{ copies of } M(A)),$$

has rank equal to $\rho_t(A)$ and its bases (maximal independent sets) are those $K \subseteq \{1, \ldots, n\}$ such that $|K| = \rho_t(A[*;K]) = \rho_t(A)$.

Let *l* be a positive integer. A partition of weight *l* is a sequence of nonnegative integers $\alpha = (\alpha_1, \ldots, \alpha_u)$ satisfying

$$\alpha_1 \ge \alpha_2 \ge \ldots \ge \alpha_u \ge 0$$

and

$$\sum_{i=1}^{u} \alpha_i = l.$$

If $\alpha = (\alpha_1, \ldots, \alpha_p)$ is a partition of weight l and $\alpha_p > 0$ we say that p is the length of α (that is, the length of α is the greatest k such that $\alpha_k > 0$).

Download English Version:

https://daneshyari.com/en/article/4599433

Download Persian Version:

https://daneshyari.com/article/4599433

Daneshyari.com