Bruhat order of tournaments

Richard A. Brualdi ${ }^{\text {a,* }}$, Eliseu Fritscher ${ }^{\text {b,1 }}$
${ }^{\text {a }}$ Department of Mathematics, University of Wisconsin, Madison, WI 53706, United States
${ }^{\text {b }}$ Instituto de Matemática, Universidade Federal Do Rio Grande Do Sul, 91509-900 Porto Alegre-RS, Brazil

A R T I C L E I N F O

Article history:

Received 7 May 2014
Accepted 3 June 2014
Available online 26 June 2014
Submitted by P. Semrl

$M S C$:

05C20
06A06
06A07
15B34

Keywords:
Tournament matrices
Score vector
Partially ordered set
Bruhat order

Abstract

We extend the Bruhat order on the set \mathcal{S}_{n} of permutations (permutation matrices) of $\{1,2, \ldots, n\}$ and its generalization to classes $\mathcal{A}(R, S)$ of $(0,1)$-matrices with row sum vector R and column sum vector S, to a Bruhat order on classes $\mathcal{T}(R)$ of tournaments with score vector R. As in the case of the Bruhat order on $\mathcal{A}(R, S)$, there are two possible Bruhat orders where one is a refinement of the other. We characterize the cover relation for one of these orders. For a special family of score vectors, we show these Bruhat orders are isomorphic to the partially ordered set of all subsets of a set.

© 2014 Published by Elsevier Inc.

1. Introduction

Denote by K_{n} the complete graph with vertices $\{1,2, \ldots, n\}$. A tournament of order n is an orientation of K_{n}. A tournament matrix $T=\left[t_{i j}\right]$ is the $n \times n$ adjacency matrix

[^0]of a tournament of order n. Thus T is a (0,1)-matrix such that $T+T^{t}=J_{n}-I_{n}$ where J_{n} is the $n \times n$ matrix of all 1 s . In general, we shall not distinguish between a tournament and a tournament matrix and usually refer to both as tournaments and label both as T. The adjacency matrix of a tournament presupposes some linear listing of the vertices. Changing the order of the vertices replaces T with $P T P^{t}$ for some permutation matrix P. The score vector of T is $R=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ where r_{i} is the number of 1 s in row i, that is, the i th row sum of T. The score vector of T is the vector of outdegrees of the vertices of T. The outdegrees determine the indegrees, since the sum of the outdegree and indegree of a vertex is $n-1$. The well-known theorem of Landau [12] asserts that a vector $R=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ of nonnegative integers is the score vector of a tournament of order n if and only if
\[

$$
\begin{equation*}
\sum_{i \in J} r_{i} \geq\binom{|J|}{2}(J \subseteq\{1,2, \ldots, n\}), \quad \text { with equality if } J=\{1,2, \ldots, n\} \tag{1}
\end{equation*}
$$

\]

If $r_{1} \leq r_{2} \leq \cdots \leq r_{n}$, which can be assumed after a reordering of the vertices, then (1) is equivalent to

$$
\begin{equation*}
\sum_{i=1}^{k} r_{i} \geq\binom{ k}{2}(k=1,2, \ldots, n), \quad \text { with equality if } k=n \tag{2}
\end{equation*}
$$

There are many proofs of Landau's theorem available; see, for instance, [1,5,11,13,14,16].
Let $\mathcal{T}(R)$ denote the set of all tournaments with score vector R. We introduce a partial order on the set $\mathcal{T}(R)$ which is motivated by the classical Bruhat order on the set \mathcal{S}_{n} of permutations of $\{1,2, \ldots, n\}$, which we regard as $n \times n$ permutation matrices. In [4,2] a Bruhat order was extended to sets $\mathcal{A}(R, S)$ of all $m \times n(0,1)$-matrices with a specified row sum vector R and column sum vector S. If $m=n$ and $R=S=(1,1, \ldots, 1)$, then $\mathcal{A}(R, S)=\mathcal{S}_{n}$, and the Bruhat orders coincide. This partial order is defined as follows. For an $m \times n(0,1)$-matrix $X=\left[x_{i j}\right]$, the leading partial sum matrix of X is the $m \times n$ nonnegative integral matrix

$$
\Sigma(X)=\left[\sigma_{i j}\right] \quad \text { where } \sigma_{i j}=\sigma_{i j}(A)=\sum_{k \leq i, l \leq j} x_{k l}(1 \leq i \leq m, 1 \leq j \leq n)
$$

Note that if the row sum vector of X is $R=\left(r_{1}, r_{2}, \ldots, r_{m}\right)$, then

$$
\sigma_{i n}=r_{1}+r_{2}+\cdots+r_{i} \quad(i=1,2, \ldots, n)
$$

If A and A^{\prime} are matrices in $\mathcal{A}(R, S)$, then A precedes A^{\prime} in the Bruhat order, written as $A \preceq_{B} A^{\prime}$ provided that

$$
\left.\Sigma(A) \geq \Sigma\left(A^{\prime}\right) \quad \text { (entrywise order }\right)
$$

https://daneshyari.com/en/article/4599442

Download Persian Version:
https://daneshyari.com/article/4599442

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: brualdi@math.wisc.edu (R.A. Brualdi), eliseu.fritscher@ufrgs.br (E. Fritscher).
 ${ }^{1}$ This research was part of this author's doctoral studies performed while visiting the University of Wisconsin - Madison and supported by a CAPES/BR Grant 0219/13-4.

