Sharp covering of a module by cyclic submodules

I.N. Nakaoka ${ }^{\text {a,*, }}$, E.L. Monte Carmelo ${ }^{\text {a,2 }}$, O.J.N.T.N. dos Santos ${ }^{\text {b }}$
${ }^{\text {a }}$ Departamento de Matemática, Universidade Estadual de Maringá, Brazil
${ }^{\text {b }}$ Universidade Estadual de Mato Grosso do Sul, Dourados, Brazil

A R T I C L E I N F O

Article history:

Received 25 February 2013
Accepted 10 June 2014
Available online 27 June 2014
Submitted by R. Brualdi

MSC:

13M99
05E20
51E20
94B65

Keywords:
Covering
Module
Linear dependence
Action of group
Min-max principle

Abstract

Let A be a finite commutative ring with identity. A subset H of the A-module A^{n} is called an R-short covering of A^{n} if every element of this module can be written as a sum of a multiple of an element in H and an A-linear combination with at most R canonical vectors. Let $c(A, n, R)$ be the minimum cardinality of an R-short covering of A^{n}. In this work, the numbers $c(A, n, 0)$ are computed when A is a direct product of chain rings (extending previous results by Yildiz et al.) and when A is a finite local ring such that $D(A)^{2}=\{0\}$, where $D(A)$ denotes the set of all zero divisors of A. In order to obtain these results, we develop a method based on action of group, the min-max principle and pairwise weakly linearly independent sets (a concept introduced in this article). A structural connection between classical covering and short covering is described too. Thus a combination of previous results is applied to improve known bounds on short coverings for several values.

© 2014 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

1.1. Preliminary problems

A collection of subgroups $\left\{G_{1}, \ldots, G_{k}\right\}$ is a group partition of the group G if G is the union of these subgroups and each pairwise intersection $G_{i} \cap G_{j}$ contains only the null element of G. Necessary and sufficient conditions for the existence of a group partition have been investigated since the seminal paper by Miller [11], who proved that if an abelian group has a non-trivial partition, then the group must be an elementary abelian p-group. Several works about this topic are collected in [19].

An extension arises naturally in the context of vector space. Let \mathbb{F}_{q}^{n} denote the n-dimensional vector space over the finite field \mathbb{F}_{q}. A family $\left\{V_{i}, \ldots, V_{k}\right\}$ of subspaces of \mathbb{F}_{q}^{n} is called a vector partition of \mathbb{F}_{q}^{n} if it satisfies: $\mathbb{F}_{q}^{n}=\bigcup_{i=1}^{k} V_{i}$ (covering property) and $V_{i} \cap V_{j}=\{0\}$ for every $i \neq j$ (packing property). The literature on vector partition interplays theoretical results and applications. Herzog and Schönheim [6] established a connection between vector partitions and single-error-correcting perfect mixed linear codes. Besides coding theory, the partition problem can be applied to several geometric and combinatorial structures: partial spreads, uniformly resolvable designs, see [15] and its references. Let $\sigma_{q}(n, t)$ denote the minimum number of a vector partition of \mathbb{F}_{q}^{n} in which the largest partition has dimension t, see [5]. For our purpose, we mention $\sigma_{q}(n, 1)=\left(q^{n}-1\right) /(q-1)$.

1.2. Formulation of the problem

This work deals with an extension of vector partition to a module over a finite ring. In view of Miller's result, there is not hope of finding a concept of partition for a general module, because even the principal submodules can have non-trivial intersection. However, we restrict our attention to the corresponding covering problem. Throughout this paper, all rings are assumed to be commutative with identity 1 . Let A^{n} be the A-module in the usual way, where A denotes an arbitrary finite ring.

A subset H of A^{n} is an R-short covering of A^{n} if every element in A^{n} can be represented as a sum of a multiple of a vector in H and an A-linear combination of at most R canonical vectors of A^{n}, that is, for $v \in A^{n}$, there exists $h \in H$ and there exist scalars $\alpha, \alpha_{1}, \ldots, \alpha_{R} \in A$ such that

$$
\begin{equation*}
v=\alpha h+\sum_{i=1}^{R} \alpha_{i} e_{j_{i}} \tag{1.1}
\end{equation*}
$$

where $\left\{e_{1}, \ldots, e_{n}\right\}$ denotes the canonical base of A^{n}. The number $c(A, n, R)$ represents the minimum cardinality of an R-short covering of A^{n}.

Let us focus on the extremal case $R=0$. A 0 -short covering H of A^{n} can be regarded as a cyclic covering of A^{n}, since A^{n} becomes the union of cyclic submodules $[h]=A h=$

https://daneshyari.com/en/article/4599446

Download Persian Version:

https://daneshyari.com/article/4599446

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: innakaoka@uem.br (I.N. Nakaoka), elmcarmelo@uem.br (E.L. Monte Carmelo), ojneto@uems.br (O.J.N.T.N. dos Santos).
 ${ }^{1}$ The author was partially supported by Fundação Araucária, grant 18077 (14/2009).
 ${ }^{2}$ The author was partially supported by CNPq/MCT, grants 304635/2010-3 and 311518/2013-3.

