

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Sharp covering of a module by cyclic submodules

I.N. Nakaoka ^{a,*,1}, E.L. Monte Carmelo ^{a,2}, O.J.N.T.N. dos Santos ^b

ARTICLE INFO

Article history: Received 25 February 2013 Accepted 10 June 2014 Available online 27 June 2014 Submitted by R. Brualdi

MSC: 13M99 05E20 51E20 94B65

Keywords:
Covering
Module
Linear dependence
Action of group
Min-max principle

ABSTRACT

Let A be a finite commutative ring with identity. A subset H of the A-module A^n is called an R-short covering of A^n if every element of this module can be written as a sum of a multiple of an element in H and an A-linear combination with at most R canonical vectors. Let c(A, n, R) be the minimum cardinality of an R-short covering of A^n . In this work, the numbers c(A, n, 0) are computed when A is a direct product of chain rings (extending previous results by Yildiz et al.) and when A is a finite local ring such that $D(A)^2 = \{0\},\$ where D(A) denotes the set of all zero divisors of A. In order to obtain these results, we develop a method based on action of group, the min-max principle and pairwise weakly linearly independent sets (a concept introduced in this article). A structural connection between classical covering and short covering is described too. Thus a combination of previous results is applied to improve known bounds on short coverings for several values.

© 2014 Elsevier Inc. All rights reserved.

^a Departamento de Matemática, Universidade Estadual de Maringá, Brazil

^b Universidade Estadual de Mato Grosso do Sul, Dourados, Brazil

^{*} Corresponding author.

 $[\]label{lem:embedding} \begin{tabular}{lll} E-mail\ addresses: $innakaoka@uem.br\ (I.N.\ Nakaoka),\ elmcarmelo@uem.br\ (E.L.\ Monte\ Carmelo), ojneto@uems.br\ (O.J.N.T.N.\ dos\ Santos). \end{tabular}$

¹ The author was partially supported by Fundação Araucária, grant 18077 (14/2009).

² The author was partially supported by CNPq/MCT, grants 304635/2010-3 and 311518/2013-3.

1. Introduction

1.1. Preliminary problems

A collection of subgroups $\{G_1, \ldots, G_k\}$ is a group partition of the group G if G is the union of these subgroups and each pairwise intersection $G_i \cap G_j$ contains only the null element of G. Necessary and sufficient conditions for the existence of a group partition have been investigated since the seminal paper by Miller [11], who proved that if an abelian group has a non-trivial partition, then the group must be an elementary abelian p-group. Several works about this topic are collected in [19].

An extension arises naturally in the context of vector space. Let \mathbb{F}_q^n denote the n-dimensional vector space over the finite field \mathbb{F}_q . A family $\{V_i,\ldots,V_k\}$ of subspaces of \mathbb{F}_q^n is called a vector partition of \mathbb{F}_q^n if it satisfies: $\mathbb{F}_q^n = \bigcup_{i=1}^k V_i$ (covering property) and $V_i \cap V_j = \{0\}$ for every $i \neq j$ (packing property). The literature on vector partition interplays theoretical results and applications. Herzog and Schönheim [6] established a connection between vector partitions and single-error-correcting perfect mixed linear codes. Besides coding theory, the partition problem can be applied to several geometric and combinatorial structures: partial spreads, uniformly resolvable designs, see [15] and its references. Let $\sigma_q(n,t)$ denote the minimum number of a vector partition of \mathbb{F}_q^n in which the largest partition has dimension t, see [5]. For our purpose, we mention $\sigma_q(n,1) = (q^n - 1)/(q - 1)$.

1.2. Formulation of the problem

This work deals with an extension of vector partition to a module over a finite ring. In view of Miller's result, there is not hope of finding a concept of partition for a general module, because even the principal submodules can have non-trivial intersection. However, we restrict our attention to the corresponding covering problem. Throughout this paper, all rings are assumed to be commutative with identity 1. Let A^n be the A-module in the usual way, where A denotes an arbitrary finite ring.

A subset H of A^n is an R-short covering of A^n if every element in A^n can be represented as a sum of a multiple of a vector in H and an A-linear combination of at most R canonical vectors of A^n , that is, for $v \in A^n$, there exists $h \in H$ and there exist scalars $\alpha, \alpha_1, \ldots, \alpha_R \in A$ such that

$$v = \alpha h + \sum_{i=1}^{R} \alpha_i e_{j_i}, \tag{1.1}$$

where $\{e_1, \ldots, e_n\}$ denotes the canonical base of A^n . The number c(A, n, R) represents the minimum cardinality of an R-short covering of A^n .

Let us focus on the extremal case R = 0. A 0-short covering H of A^n can be regarded as a *cyclic covering* of A^n , since A^n becomes the union of cyclic submodules [h] = Ah =

Download English Version:

https://daneshyari.com/en/article/4599446

Download Persian Version:

https://daneshyari.com/article/4599446

<u>Daneshyari.com</u>