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1. Introduction

All graphs considered in this paper are simple and undirected. The resistance distance
is a distance function on graphs introduced by Klein and Randié [7]. For two vertices u, v
in a connected G, the resistance distance between u and v is defined to be the effective
resistance between them when unit resistors are placed on every edge of G. Let ry,(G)
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denote the resistance distance between u and v in G. Some results on resistance distance
can be found in [2,3,5-7,9-11].

For a graph G, let Ag and B¢ denote the adjacency matrix and vertex-edge incidence
matrix of G, respectively. The matrix Lg = Dg — A¢ is called the Laplacian matriz
of G, where D¢ is the diagonal matrix of vertex degrees of G. For a matrix M, the
{1}-inverse of M is a matrix X such that M XM = M. If M is singular, then it has
infinite {1}-inverses. It is known that resistance distances in a connected graph G can
be obtained from any {1}-inverse of L (see [1,2]).

The subdivision graph S(G) of a graph G is the graph obtained by inserting a new
vertex into every edge of G. Let G1 UG5 be the disjoint union of two graphs G; and Gs.
The subdivision-vertex join of G1 and Ga, denoted by G1VGs, is the graph obtained from
S(G1) UGy by joining every vertex of V(G1) to every vertex of V(Gs). The subdivision-
edge join of G1 and Ga, denoted by G Y G, is the graph obtained from S(G1) U G2 by
joining every vertex of I(G1) to every vertex of V(G3), where I(G1) is the set of inserted
vertices of S(G1) (see [8]). In this paper, formulae for resistance distance in G1 VG2 and
G1 Y (G5 are obtained.

2. Preliminaries

For a square matrix M, the group inverse of M, denoted by M7 is the unique matrix
X such that MXM = M, XMX = X and MX = XM. It is known that M# exists if
and only if rank(M) = rank(M?). If M is real symmetric, then M# exists and M# is a
symmetric {1}-inverse of M. Actually, M# is equal to the Moore-Penrose inverse of M
since M is symmetric (see [4]).

We use M) to denote any {1}-inverse of a matrix M. Let (M),, denote the
(u,v)-entry of M.

Lemma 2.1. (See [1,/].) Let G be a connected graph. Then

Let e denote the all-ones column vector.

Lemma 2.2. Let S be a real symmetric matriz such that Se = 0. Then S#e = 0,
TQ#
e' S* =0.

Proof. Since Se = 0, we have S7e = S#SS#e = (S#)2Se = 0,e' S# = (S*e)T =0. O

Ly Lo

Lemma 2.3. Let L = (LT Lg) be the Laplacian matrix of a connected graph. If each col-
2

-1
umn vector of Ly is —e or a zero vector, then N = (Ltl) S(;

of L, where S = L3 — L;LIILQ.

) is a symmetric {1}-inverse



Download English Version:

https://daneshyari.com/en/article/4599449

Download Persian Version:

https://daneshyari.com/article/4599449

Daneshyari.com


https://daneshyari.com/en/article/4599449
https://daneshyari.com/article/4599449
https://daneshyari.com

