

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Resistance distance in subdivision-vertex join and subdivision-edge join of graphs [☆]

Changjiang Bu*, Bo Yan, Xiuqing Zhou, Jiang Zhou

College of Science, Harbin Engineering University, Harbin 150001, PR China

ARTICLE INFO

Article history: Received 13 April 2014 Accepted 10 June 2014 Available online 28 June 2014 Submitted by R. Brualdi

MSC: 05C12 05C50 15A09

Keywords: Resistance distance Laplacian matrix Generalized inverse

ABSTRACT

The subdivision graph S(G) of a graph G is the graph obtained by inserting a new vertex into every edge of G. Let $G_1 \cup G_2$ be the disjoint union of two graphs G_1 and G_2 . The subdivision-vertex join of G_1 and G_2 , denoted by $G_1 \dot{\vee} G_2$, is the graph obtained from $S(G_1) \cup G_2$ by joining every vertex in $V(G_1)$ to every vertex in $V(G_2)$. The subdivision-edge join of G_1 and G_2 , denoted by $G_1 \dot{\vee} G_2$, is the graph obtained from $S(G_1) \cup G_2$ by joining every vertex in $I(G_1)$ to every vertex in $V(G_2)$, where $I(G_1)$ is the set of inserted vertices of $S(G_1)$. In this paper, formulae for resistance distance in $G_1 \dot{\vee} G_2$ and $G_1 \dot{\vee} G_2$ are obtained.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

All graphs considered in this paper are simple and undirected. The resistance distance is a distance function on graphs introduced by Klein and Randić [7]. For two vertices u, v in a connected G, the resistance distance between u and v is defined to be the effective resistance between them when unit resistors are placed on every edge of G. Let $r_{uv}(G)$

E-mail addresses: buchangjiang@hrbeu.edu.cn (C. Bu), zhoujiang04113112@163.com (J. Zhou).

^{*} This work is supported by the National Natural Science Foundation of China under grant 11371109, and the Fundamental Research Funds for the Central Universities under grant 2014110015.

^{*} Corresponding author.

denote the resistance distance between u and v in G. Some results on resistance distance can be found in [2,3,5-7,9-11].

For a graph G, let A_G and B_G denote the adjacency matrix and vertex-edge incidence matrix of G, respectively. The matrix $L_G = D_G - A_G$ is called the *Laplacian matrix* of G, where D_G is the diagonal matrix of vertex degrees of G. For a matrix M, the $\{1\}$ -inverse of M is a matrix X such that MXM = M. If M is singular, then it has infinite $\{1\}$ -inverses. It is known that resistance distances in a connected graph G can be obtained from any $\{1\}$ -inverse of L_G (see [1,2]).

The subdivision graph S(G) of a graph G is the graph obtained by inserting a new vertex into every edge of G. Let $G_1 \cup G_2$ be the disjoint union of two graphs G_1 and G_2 . The subdivision-vertex join of G_1 and G_2 , denoted by $G_1 \dot{\vee} G_2$, is the graph obtained from $S(G_1) \cup G_2$ by joining every vertex of $V(G_1)$ to every vertex of $V(G_2)$. The subdivision-edge join of G_1 and G_2 , denoted by $G_1 \dot{\vee} G_2$, is the graph obtained from $S(G_1) \cup G_2$ by joining every vertex of $I(G_1)$ to every vertex of $V(G_2)$, where $I(G_1)$ is the set of inserted vertices of $S(G_1)$ (see [8]). In this paper, formulae for resistance distance in $G_1 \dot{\vee} G_2$ and $G_1 \dot{\vee} G_2$ are obtained.

2. Preliminaries

For a square matrix M, the group inverse of M, denoted by $M^{\#}$, is the unique matrix X such that MXM = M, XMX = X and MX = XM. It is known that $M^{\#}$ exists if and only if $\operatorname{rank}(M) = \operatorname{rank}(M^2)$. If M is real symmetric, then $M^{\#}$ exists and $M^{\#}$ is a symmetric $\{1\}$ -inverse of M. Actually, $M^{\#}$ is equal to the Moore–Penrose inverse of M since M is symmetric (see [4]).

We use $M^{(1)}$ to denote any $\{1\}$ -inverse of a matrix M. Let $(M)_{uv}$ denote the (u, v)-entry of M.

Lemma 2.1. (See [1,4].) Let G be a connected graph. Then

$$r_{uv}(G) = \left(L_G^{(1)}\right)_{uu} + \left(L_G^{(1)}\right)_{vv} - \left(L_G^{(1)}\right)_{uv} - \left(L_G^{(1)}\right)_{vu} = \left(L_G^{\#}\right)_{uu} + \left(L_G^{\#}\right)_{vv} - 2\left(L_G^{\#}\right)_{uv}.$$

Let e denote the all-ones column vector.

Lemma 2.2. Let S be a real symmetric matrix such that Se=0. Then $S^{\#}e=0$, $e^{\top}S^{\#}=0$.

Proof. Since Se = 0, we have $S^{\#}e = S^{\#}SS^{\#}e = (S^{\#})^{2}Se = 0$, $e^{\top}S^{\#} = (S^{\#}e)^{\top} = 0$. \square

Lemma 2.3. Let $L = \begin{pmatrix} L_1 & L_2 \\ L_2^\top & L_3 \end{pmatrix}$ be the Laplacian matrix of a connected graph. If each column vector of L_2^\top is -e or a zero vector, then $N = \begin{pmatrix} L_1^{-1} & 0 \\ 0 & S^\# \end{pmatrix}$ is a symmetric $\{1\}$ -inverse of L, where $S = L_3 - L_2^\top L_1^{-1} L_2$.

Download English Version:

https://daneshyari.com/en/article/4599449

Download Persian Version:

https://daneshyari.com/article/4599449

<u>Daneshyari.com</u>