

Contents lists available at ScienceDirect

Linear Algebra and its Applications

On graphs with at least three distance eigenvalues less than $-1^{\frac{1}{12}}$

Huiqiu Lin^{a,*}, Mingqing Zhai^b, Shicai Gong^c

- ^a Department of Mathematics, East China University of Science and Technology, Shanqhai, 200237, China
- b School of Mathematical Science, Chuzhou University, Anhui, Chuzhou, 239012, China
- ^c School of Science, Zhejiang A & F University, Zhejiang, Linan, 311300, China

ARTICLE INFO

Article history: Received 4 December 2013 Accepted 21 June 2014 Available online 9 July 2014 Submitted by R. Brualdi

MSC: 05C50

 $\begin{tabular}{ll} Keywords: \\ Distance spectra \\ Distance spectral radius \\ The second smallest D-eigenvalue \\ \end{tabular}$

ABSTRACT

Let G be a connected graph with order n and D(G) be the distance matrix of G. Suppose that $\lambda_1(D) \geq \lambda_2(D) \geq \cdots \geq \lambda_n(D)$ are the D-eigenvalue of G. In this paper, we show that $\lambda_{n-1}(D(G)) \leq -1$ if $n \geq 4$ and $\lambda_{n-2}(D(G)) \leq -1$ if $n \geq 7$. We also characterize all connected graphs with $\lambda_{n-1}(D(G)) = -1$, moreover it is shown that these graphs are determined by their distance spectra.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Unless stated otherwise, we follow [1] for terminology and notations, and we consider finite connected simple graphs. In particular, denote $V(G) = \{v_1, \dots, v_n\}$ the vertex set

 $^{^{\}pm}$ Supported by National Natural Science Foundation of China (11101057) and Zhejiang Provincial Natural Science Foundation of China (LY12A01016).

^{*} Corresponding author.

 $E\text{-}mail\ addresses:\ huiqiulin@126.com\ (H.\ Lin),\ mqzhai@chzu.edu.cn\ (M.\ Zhai),\ scgong@zafu.edu.cn\ (S.\ Gong).$

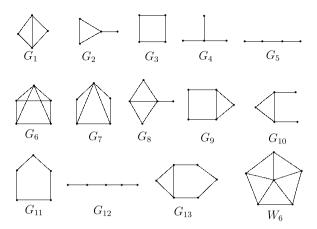


Fig. 1. Graphs $G_1 - G_{13}$ and W_6 .

of G, E(G) the edge set of G. For a graph G = (V, E), two vertices are called *adjacent* if they are connected by an edge. |V(G)| is always called the order of G and |E(G)| is always called the size of G. For $S \subseteq V(G)$, let G[S] denote the subgraph induced by S. A graph is $\{H_1, H_2, \dots, H_k\}$ -free if it contains no induced subgraph isomorphic to any H_i for $i = 1, \dots, k$.

Let G be a connected graph. The distance matrix D(G) is nonnegative and irreducible, so the eigenvalues of D(G) are real and we can order the eigenvalues as $\lambda_1(D) \geq \lambda_2(D) \geq \cdots \geq \lambda_n(D)$. The largest eigenvalue of D(G) is called the distance spectral radius of G, denoted by $\lambda_1(D)$ and $\lambda_{n-1}(D)$ is called the second smallest D-eigenvalue. The positive unit eigenvector corresponding to $\lambda_1(D)$ is called the Perron vector of D(G). There are a lot of papers about the distance spectral radius, see [4,5,8,9,11,12].

The complete product $G_1 \vee G_2$ of graphs G_1 and G_2 is the graph obtained from $G_1 \cup G_2$ by joining every vertex of G_1 with every vertex of G_2 . Let K_n denote the complete graph on n vertices, and let $W_n = K_1 \vee C_{n-1}$ denote the wheel graph. Let K_{n_1,\dots,n_k} denote the complete k-partite graph. Lin et al. [7] showed that $\lambda_n(D(G)) = -2$ if and only if $G \cong K_{n_1,\dots,n_k}$, and the result is independently proved by Yu [10] in a different way. Let $K_{s,t}^r = K_r \vee (K_s \cup K_t)$ with $r \geq 1$. We first give the following two theorems.

Theorem 1.1. Let G be a connected graph with order n and D be the distance matrix of G. If $n \geq 4$, then $\lambda_{n-1}(D) \leq -1$ and the equality holds if and only if $G \cong K_{s,t}^r$ with $r \geq 1$.

Theorem 1.2. Let G be a connected graph with order n and D be the distance matrix of G. (See Fig. 1.)

- (1) If n = 4, then $\lambda_2(D) \le -1$ unless G is one of $\{G_i \mid i = 1, \dots, 5\}$.
- (2) If n = 5, then $\lambda_3(D) \le -1$ unless G is one of $\{G_i \mid i = 6, \dots, 12\}$.
- (3) If n = 6, then $\lambda_4(D) \leq -1$ unless either $G \cong W_6$ or $G \cong G_{13}$.
- (4) If $n \ge 7$, then $\lambda_{n-2}(D) \le -1$.

Download English Version:

https://daneshyari.com/en/article/4599456

Download Persian Version:

https://daneshyari.com/article/4599456

<u>Daneshyari.com</u>