

Contents lists available at ScienceDirect

### Linear Algebra and its Applications

www.elsevier.com/locate/laa

# More accurate weak majorization relations for the Jensen and some related inequalities



LINEAR

olications

Mario Krnić<sup>a,\*</sup>, Josip Pečarić<sup>b</sup>

<sup>a</sup> University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia
<sup>b</sup> University of Zagreb, Faculty of Textile Technology, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia

#### ARTICLE INFO

Article history: Received 1 April 2014 Accepted 23 June 2014 Available online 9 July 2014 Submitted by R. Brualdi

MSC: 47A30 47B15 15A45 26A51

Keywords: Convex function Jensen inequality Eigenvalue Weak majorization Unitarily invariant norm

#### ABSTRACT

Motivated by results of Aujla and Silva [3], we give several more precise weak majorization and eigenvalue inequalities for some matrix versions of the famous Jensen inequality with regard to a convexity. Our main results are then applied to log convex functions. As an application, we obtain refinements of some well-known matrix inequalities.

© 2014 Elsevier Inc. All rights reserved.

#### 1. Introduction

Throughout this article  $\mathcal{M}_n$  is the algebra of all  $n \times n$  complex matrices and  $\mathcal{H}_n$  stands for the set of all Hermitian matrices in  $\mathcal{M}_n$ . For an interval  $J \subseteq \mathbb{R}$ , we denote by

\* Corresponding author.

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2014.06.037} 0024-3795 \ensuremath{\oslash} \ensuremath{\bigcirc} \ensuremath{\otimes} \ensuremath{\otimes}$ 

E-mail addresses: mario.krnic@fer.hr (M. Krnić), pecaric@element.hr (J. Pečarić).

 $\mathcal{H}_n(J)$  the set of all Hermitian matrices in  $\mathcal{M}_n$  whose spectrum is contained in J. We denote by  $\mathcal{S}_n$ , the set of all positive semi-definite matrices in  $\mathcal{M}_n$ , while  $\mathcal{P}_n$  stands for the set of all positive definite matrices in  $\mathcal{M}_n$ . For column vectors  $x, y \in \mathbb{C}^n$  their inner product is denoted by  $\langle x, y \rangle = y^* x$ .

For Hermitian matrices A and B we define an operator order, i.e.  $A \leq B$  if  $B-A \in S_n$ . Further, for  $A \in \mathcal{H}_n$  we denote by  $\lambda_1(A) \geq \lambda_2(A) \geq \cdots \geq \lambda_n(A)$  the eigenvalues of A arranged in a decreasing order with their multiplicities counted. The notation  $\lambda(A)$  stands for the row vector  $(\lambda_1(A), \lambda_2(A), \ldots, \lambda_n(A))$ . The eigenvalue inequality  $\lambda(A) \leq \lambda(B)$  means that  $\lambda_j(A) \leq \lambda_j(B)$  for all  $1 \leq j \leq n$ . The weak majorization inequality  $\lambda(A) \prec (A) \prec_w \lambda(B)$  means  $\sum_{j=1}^k \lambda_j(A) \leq \sum_{j=1}^k \lambda_j(B)$ ,  $k = 1, 2, \ldots, n$ . The above three kinds of ordering satisfy  $A \leq B \Rightarrow \lambda(A) \leq \lambda(B) \Rightarrow \lambda(A) \prec_w \lambda(B)$ . Note that the first implication is the Weyl monotonicity theorem (see, e.g. [5, p. 63]), while the second holds trivially.

A real valued function defined on the interval J is called convex if

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y), \tag{1}$$

for all  $0 \le t \le 1$  and  $x, y \in J$ . If the sign of inequality (1) is reversed, f is called a concave function. One of the most important inequalities in connection with a convex function  $f: J \to \mathbb{R}$  is the famous Jensen inequality which asserts that

$$f\left(\sum_{i=1}^{m} p_i x_i\right) \le \sum_{i=1}^{m} p_i f(x_i),\tag{2}$$

where  $\sum_{i=1}^{m} p_i = 1, p_i \ge 0$ , and  $x_i \in J, i = 1, 2, ..., m$ . For a comprehensive inspection on convex functions, its properties and the corresponding inequalities, the reader is referred to [14].

On the other hand,  $f: J \to \mathbb{R}$  is operator convex if

$$f(tA + (1-t)B) \le tf(A) + (1-t)f(B), \tag{3}$$

for all  $0 \le t \le 1$  and  $A, B \in \mathcal{H}_n(J)$ . Recall that for Hermitian matrix  $H \in \mathcal{H}_n(J)$ , f(H) is defined by familiar functional calculus.

One of the numerous operator versions of the Jensen inequality asserts that if  $f: J \to \mathbb{R}$  is operator convex function such that  $0 \in J$  and  $f(0) \leq 0$ , then

$$f(X^*AX) \le X^*f(A)X \tag{4}$$

holds for all  $A \in \mathcal{H}_n(J)$  and contractions  $X \in \mathcal{M}_n$ . Recall that  $X \in \mathcal{M}_n$  is called contraction if  $||X|| \leq 1$ , where ||X|| is the spectral norm. For some related versions of the Jensen operator inequality, the reader is referred to [7].

Some ten years ago, Aujla and Silva [3], proved that if  $f: J \to \mathbb{R}$  is a convex function, then the eigenvalues of f(tA + (1 - t)B) are weakly majorized by the eigenvalues of Download English Version:

## https://daneshyari.com/en/article/4599458

Download Persian Version:

https://daneshyari.com/article/4599458

Daneshyari.com