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In this paper we give an answer to an open problem posed 
by M.Z. Lee et al. (2012) [2]. More precisely, we prove that 
the classical regular magic square of odd order produced by 
the centroskew S-circulant matrix with the assignment aj =
j − 1, j = 1, 2, · · · , (n + 1)/2 is always nonsingular. Moreover 
an explicit formula for computing the eigenvalues of classical 
regular magic squares of odd order is given.
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1. Introduction

A magic square of order n is a square matrix with entries such that the sum of the 
elements along each row and column, as well as the main diagonal and main backdiagonal 
are the same constant, the constant is called magic sum. In addition, if the entries of 
magic squares are integers from 1 through n2, where each number is used exactly once, 
such magic squares shall be called classical magic squares. For a classical magic square 
of order n, it is well known that the magic sum μ = n(n2 + 1)/2. A magic square 
M = (mij)n×n is said to be regular if mij + mn+1−i,n+1−j = 2μ/n.

Magic squares not only have a sense of beauty but also contain many strange mys-
teries [1]. Along with the rapid development of computer technology, magic squares are 
widely applied in mathematics and computer science, especially in image processing, 
graph theory, cryptography. Therefore, more and more scholars draw considerable at-
tention to magic squares [2–6].

M.Z. Lee et al. [2] provided a method of constructing regular magic squares of order n
using the centroskew S-circulant matrix A, it was proved that if n is an odd prime power, 
and the first row of A satisfy aj = j − 1 for 1 � j � (n + 1)/2, then the classical regular 
magic square M = nA + AJ + n2+1

2 E is always nonsingular. Meanwhile the following 
open problem was posed in [2].

Problem. Suppose that A is a centroskew S-circulant matrix of order n, and the first 
row of A is defined as aj = j − 1, j = 1, 2, · · · , (n + 1)/2. Whether the classical regular 
magic square

M = nA + AJ + n2 + 1
2 E

is nonsingular when n is a product involving two or more distinct primes.
In this research we prove that the regular magic square defined as above is nonsingular 

for any odd integer n (n � 3). This is an answer to the above open problem. In addition
an explicit formula of eigenvalues is given.

2. Preliminaries

In this section we introduce some basic concepts and symbols which are needed 
throughout this paper.

Let In stand for the identity matrix of order n. For a matrix A, A(i, j) represents the 
(i, j)-entry of A and A∗ is the conjugate transpose of A.

Definition 2.1. (See [7].) A matrix A of order n with the first row (a1, a2, · · · , an) is 
called circulant matrix, if the i-th row of A is obtained from the (i − 1)-th row by 
shifting the entries cyclically one column to right (2 � i � n). We shall denote A =
circ(a1, a2, · · · , an), i.e.
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