Some results on B－matrices and doubly B－matrices ${ }^{\text {空，公公 }}$

C．Mendes Araújo ${ }^{\text {a，＊}}$ ，Juan R．Torregrosa ${ }^{\text {b }}$
${ }^{\text {a }}$ CMAT－Centro de Matemática，Universidade do Minho，Campus de Gualtar， 4710－057 Braga，Portugal
${ }^{\text {b }}$ Dpto．de Matemática Aplicada，Universidad Politécnica de Valencia，Camino de Vera S／N， 46022 Valencia，Spain

A R T I C L E I N F O

Article history：

Received 6 November 2013
Accepted 27 June 2014
Available online 15 July 2014
Submitted by R．Brualdi

MSC：

15A24
15B48
Keywords：
B－matrix
Doubly B－matrix
Subdirect sum
Hadamard product
Kronecker sum

Abstract

A real matrix with positive row sums and all its off－diagonal elements bounded above by their corresponding row means was called in［4］a B－matrix．In［5］，the class of doubly B－matrices was introduced as a generalization of the previous class．We present several characterizations and properties of these matrices and for the class of B－matrices we consider corresponding questions for subdirect sums of two matrices （a general＇sum＇of matrices introduced in［1］by S．M．Fallat and C．R．Johnson，of which the direct sum and ordinary sum are special cases），for the Hadamard product of two matrices and for the Kronecker product and sum of two matrices．

© 2014 Elsevier Inc．All rights reserved．

[^0]
1. Introduction

A square real matrix $A=\left(a_{i j}\right)_{i, j=1}^{n}$ with positive row sums is a B-matrix if all its off-diagonal elements are bounded above by the corresponding row means (see [4]), that is, for all $i \in\{1, \ldots, n\}$,

$$
\sum_{j=1}^{n} a_{i j}>0
$$

and

$$
\frac{1}{n} \sum_{j=1}^{n} a_{i j}>a_{i k}, \quad \forall k \neq i
$$

In [2] it was proved that these matrices have positive determinants and the author provided a first application to the localization of the real eigenvalues of a real matrix. In [4] the author proved that the class of B-matrices is a subset of the class of P-matrices and applied this property to the localization of the real parts of all eigenvalues of a real matrix.

Given a real matrix $A=\left(a_{i j}\right)$ we define, for each row $i, r_{i_{A}}=\max \left\{0, a_{i j} \mid j \neq i\right\}$. We simply refer to r_{i} if the context is unambiguous. If A is a square matrix of order n, let A^{+}be the following matrix

$$
A^{+}=\left[\begin{array}{cccc}
a_{11}-r_{1} & a_{12}-r_{1} & \ldots & a_{1 n}-r_{1} \\
a_{21}-r_{2} & a_{22}-r_{2} & \ldots & a_{2 n}-r_{2} \\
\vdots & \vdots & & \vdots \\
a_{n 1}-r_{n} & a_{n 2}-r_{n} & \ldots & a_{n n}-r_{n}
\end{array}\right]
$$

Throughout this paper, \mathcal{Z}_{n} will stand for the set of real square matrices of order n whose off-diagonal entries are nonpositive, that is $\mathcal{Z}_{n}=\left\{A=\left(a_{i j}\right) \in \mathcal{M}_{n}(\mathbb{R}): a_{i j} \leq 0\right.$ if $i \neq j, i, j=1, \ldots, n\}$. If A is in \mathcal{Z}_{n}, we say that A is a Z-matrix (of order n).

In [4] Peña derived a characterization of B-matrices using the values r_{i} : he proved that a real matrix $A=\left(a_{i j}\right)_{i, j=1}^{n}$ is a B-matrix if and only if, for all $i \in\{1, \ldots, n\}$,

$$
\begin{equation*}
\sum_{k=1}^{n} a_{i k}>n r_{i} \tag{1}
\end{equation*}
$$

He also proved (see [4]) that A is a B-matrix if and only if, for all $i \in\{1, \ldots, n\}$,

$$
\left(a_{i i}-r_{i}\right)>\sum_{k \neq i}\left(r_{i}-a_{i k}\right) .
$$

https://daneshyari.com/en/article/4599478

Download Persian Version:
https://daneshyari.com/article/4599478

Daneshyari.com

[^0]: \＃This research was supported by Ministerio de Ciencia y Tecnología MTM2011－28636－C02－02．
 Hy This research was financed by FEDER Funds through＂Programa Operacional Factores de Competitividade－COMPETE＂and by Portuguese Funds through FCT－＂Fundação para a Ciência e Tecnologia＂，within the project PEst－C／MAT／UI0013／2011．
 ＊Corresponding author．
 E－mail addresses：clmendes＠math．uminho．pt（C．Mendes Araújo），jrtorre＠mat．upv．es （J．R．Torregrosa）．

