
Suitability of chaotic iterations schemes using XORshift
for security applications

Jacques M. Bahi, Xiaole Fang n, Christophe Guyeux, Qianxue Wang

University of Franche-Comté, FEMTO-ST Institute, UMR 6174 CNRS, Besanc-on, France

a r t i c l e i n f o

Article history:

Received 28 August 2012

Received in revised form

27 February 2013

Accepted 2 March 2013
Available online 14 March 2013

Keywords:

Pseudorandom number generators

Chaotic sequences

Statistical tests

Discrete chaotic iterations

Information hiding

a b s t r a c t

The design and engineering of original cryptographic solutions is a major concern to provide secure

information systems. In a previous study, we have described a generator based on chaotic iterations,

which uses the well-known XORshift generator. By doing so, we have improved the statistical

performances of XORshift and make it behave chaotically, as defined by Devaney. The speed and

security of this former generator have been improved in a second study, to make its usage more

relevant in the Internet security context. In this paper, these contributions are summarized and a new

version of the generator is introduced. It is based on a new Lookup Table implying a large improvement

of speed. A comparison and a security analysis between the XORshift and these three versions of our

generator are proposed, and various new statistical results are given. Finally, an application in the

information hiding framework is presented, to give an illustrative example of the use of such a

generator in the Internet security field.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

To use a pseudorandom number generator (PRNG) with a large
level of security is it necessary to satisfy the Internet security
requirements to support activities as e-Voting, information hiding,
and the protection of intellectual property (Bahi and Guyeux, to
appear; Liu et al., 2007; Yi and Okamoto, 2012). This level depends on
the proof of theoretical properties and results of numerous statistical
tests. Many PRNGs, based for instance on linear congruential methods
and feedback shift-registers (Knuth, 1998; L’ecuyer, 2008; Blaszczyk
and Guinee, 2009), have been proven to be secure, following a
probabilistic approach. More recently, several researchers have
explored the idea of using chaotic dynamical systems to reinforce
the security of these important tools (Falcioni et al., 2005; Cecen et al.,
2009; Li et al., 2001). But the number of generators claimed as
chaotic, which actually have been proven to be unpredictable (as it is
defined in the mathematical theory of chaos) is very small.

This paper extends a study initiated in Bahi et al. (2009), Wang
et al. (2010), and Bahi and Guyeux (2010), in which we tried to fill
this gap. In Bahi and Guyeux (2010), it is proven that chaotic
iterations (CIs), a suitable tool for fast computing iterative algo-
rithms, satisfy the topological chaotic property, as it is defined by

Devaney (1989). In Bahi et al. (2009) the chaotic behavior of CIs
is exploited in order to obtain an unpredictable PRNG, which
depends on two logistic maps. Lastly, in Wang et al. (2010), a new
version of this generator using decimations has been proposed
and XORshift has replaced the logistic map. We have shown that,
in addition to being chaotic, this generator can pass the NIST
(National Institute of Standards and Technology of the U.S.
Government) battery of tests (NIST Special Publication 800-22
rev1a, 2010), widely considered as a comprehensive and stringent
battery of tests for cryptographic applications.

In this paper, a new version of this chaotic PRNG is introduced.
It is based on a Lookup Table (LUT) method. After having
introduced it, we will give a comparison of the speed, of the
statistical properties, and of the security for all of these generators
based on XORshift generator (Marsaglia, 2003). These results
added to its chaotic properties allow us to consider that this
new generator has good pseudorandom characteristics and is able
to withstand attacks. After having presented the theoretical
framework of the study and a security analysis, we will give
a comparison based on new statistical tests. Finally a concrete
example of how to use these pseudorandom numbers for infor-
mation hiding through the Internet is detailed.

The remainder of this paper is organized in the following way.
In Section 2, some basic definitions concerning chaotic iterations
and PRNGs are recalled. Then, the generator based on LUT discrete
chaotic iterations is presented in Section 3. In Section 4, various
tests are passed to make a statistical comparison between this
new PRNG and other existing ones. In the next sections, a

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jnca

Journal of Network and Computer Applications

1084-8045/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.jnca.2013.03.001

n Corresponding author. Tel.: þ33 381666948.

E-mail addresses: jacques.bahi@univ-fcomte.fr (J.M. Bahi),

xiaole.fang@univ-fcomte.fr (X. Fang),

christophe.guyeux@univ-fcomte.fr (C. Guyeux),

qianxue.wang@univ-fcomte.fr (Q. Wang).

Journal of Network and Computer Applications 37 (2014) 282–292

www.elsevier.com/locate/jnca
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2013.03.001
http://dx.doi.org/10.1016/j.jnca.2013.03.001
http://dx.doi.org/10.1016/j.jnca.2013.03.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2013.03.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2013.03.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2013.03.001&domain=pdf
mailto:jacques.bahi@univ-fcomte.fr
mailto:xiaole.fang@univ-fcomte.fr
mailto:christophe.guyeux@univ-fcomte.fr
mailto:qianxue.wang@univ-fcomte.fr
http://dx.doi.org/10.1016/j.jnca.2013.03.001


potential use of this PRNG in some Internet security field is
presented, namely in information hiding. The paper ends with a
conclusion section where the contribution is summarized and
intended future work is presented.

2. Review of basics

2.1. Notations

11;NU -f1,2, . . . ,Ng
Sn

- the nth term of a sequence S¼ ðS1,S2, . . .Þ
vi - the ith component of a vector: v¼ ðv1,v2, . . . ,vnÞ

fk - kth composition of a function f

strategy - a sequence which elements belong in 11;NU
S - the set of all strategies

Ck
n

- the binomial coefficient ðnkÞ ¼
n!

k!ðn�kÞ!
4 - the bitwise exclusive or
þ - the integer addition

5 and b - the usual shift operators

ðX ,dÞ - a metric space

bxc - returns the highest integer smaller than x

n! - the factorial n!¼ n� ðn�1Þ � � � � � 1

Nn - the set of positive integers {1, 2, 3,y}

& - the bitwise AND

2.2. Chaotic iterations

Definition 1. The set B denoting f0,1g, let f : BN
�!BN be an

‘‘iteration’’ function and SAS be a chaotic strategy. Then, the so-
called chaotic iterations are defined by Robert (1986)

x0ABN ,

8nANn, 8iA11;NU, xn
i ¼

xn�1
i if Sna i

f ðxn�1ÞSn if Sn
¼ i:

(
8>><
>>: ð1Þ

In other words, at the nth iteration, only the Sn-th cell is
‘‘iterated’’. Note that in a more general formulation, Sn can be a
subset of components and f ðxn�1ÞSn can be replaced by f ðxkÞSn , where
kon, describing for example delays transmission. For the general
definition of such chaotic iterations, see, e.g., Robert (1986).

Chaotic iterations generate a set of vectors (Boolean vectors in
this paper), they are defined by an initial state x0, an iteration
function f and a chaotic strategy S.

Algorithm 1. An arbitrary round of the old CI(XORshift1,
XORshift2) generator.

a’XORshift1ðÞ

m’a mod 2þc

while i¼ 0, . . . ,m

b’XORshift2ðÞ

S’b mod N

xS’xS

end while
r’x

Return r

2.3. Old CI(XORshift, XORshift) algorithm

The basic design procedure of the old CI generator (Bahi et al.,
2009) is recalled in Algorithm 1. The internal state is x (N bits), the

output state is r (N bits), a and b are computed by two XORshift
generators. Finally, N and cZ3N are constants defined by
the user.

2.4. New CI(XORshift, XORshift) algorithm

Algorithm 2 summarizes (Wang et al., 2010) the basic design
procedure of the new generator. The internal state is x (a Boolean
vector of size N), the output state is r (N bits). a and b are those
computed by the two XORshifts. The value f(a) is an integer,
defined as in Eq. (2). Lastly, N is a constant defined by the user.

mn ¼ f ðynÞ ¼

0 if 0r
yn

232
o

C0
N

2N

1 if
C0

N

2N
r

yn

232
o
P1

i ¼ 0

Ci
N

2N

2 if
P1

i ¼ 0

Ci
N

2N
r

yn

232
o
P2

i ¼ 0

Ci
N

2N

^ ^

N if
PN�1

i ¼ 0

Ci
N

2N
r

yn

232
o1:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð2Þ

Algorithm 2. An arbitrary round of the new CI(XORshift1,
XORshift2) generator.

1: while i¼ 0, . . . ,N do
2: di’0
3: end while
4: a’XORshift1ðÞ
5: m’f ðaÞ

6: k’m

7: while i¼ 0, . . . ,K do
8: b’XORshift2ðÞmodN

9: S’b

10: if dS¼0 then
11: xS’xS

12: dS’1
13: else if dS¼1 then
14: k’kþ1
15: end if
16: end while
17: r’x

18: Return r

3. LUT CI(XORshift, XORshift) algorithms and example

3.1. Introduction

The LUT CI generator is an improved version of the new CI
generator. The key-ideas are

� To use a Lookup Table for a faster generation of strategies.
These strategies satisfy the same property than the ones
provided by the decimation process.
� And to use all the bits provided by the two inputted generators

(to discard none of them).

These key-ideas are put together by the following way.
Let us firstly recall that in chaotic iterations, only the cells

designed by Sn-th are ‘‘iterated’’ at the nth iteration. Sn can be
either a component (i.e., only one cell is updated at each iteration,
so SnA11;NU) or a subset of components (any number of cells
can be updated at each iteration, that is, Sn

�11;NU). The first

J.M. Bahi et al. / Journal of Network and Computer Applications 37 (2014) 282–292 283



Download	English	Version:

https://daneshyari.com/en/article/459948

Download	Persian	Version:

https://daneshyari.com/article/459948

Daneshyari.com

https://daneshyari.com/en/article/459948
https://daneshyari.com/article/459948
https://daneshyari.com/

