The generators of the solution space for a system of inequalities ${ }^{\wedge}$

Xue-ping Wang*, Hui-li Wang
College of Mathematics and Software Science, Sichuan Normal University, Chengdu, Sichuan 610066, People's Republic of China

A R T I C L E I N F O

Article history:

Received 12 November 2013
Accepted 4 July 2014
Available online 26 July 2014
Submitted by P. Butkovic

MSC:

15A80
15A39

Keywords:
Max-plus algebra
A system of inequalities
Supereigenvector
Nonnegative elementary cycle
Generator
Basis

Abstract

The generators of the solution space for a system of inequalities $A \otimes \mathbf{x} \geq \mathbf{x}$ are considered in this paper, where A is a square matrix over $\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty\}$, \mathbf{x} is a column vector and \otimes is a max-plus composition. This paper presents some properties of solutions to the system of inequalities and proposes an algorithm to find a set of generators for the solution space of the system of inequalities with $A \in \overline{\mathbb{R}}^{n \times n}$.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In max-algebra, $a \oplus b=\max \{a, b\}, a \otimes b=a+b$ for $a, b \in \overline{\mathbb{R}}:=\mathbb{R} \cup\{-\infty\}$. The max-plus algebra $(\overline{\mathbb{R}}, \oplus, \otimes)$ is useful for solving a class of nonlinear problems appearing

[^0]for instance in automata theory, scheduling theory, and discrete event systems (see e.g. [6,7,11,14]).

Consider the system in which the machines P_{1}, \cdots, P_{n} work in stages. In each stage all machines simultaneously produce components necessary for the next stage of some or all other machines. Let $x_{i}(r)$ be the starting time of the r th stage on machine P_{i} $(i=1, \cdots, n)$ and let $a_{i j}$ denote the duration of the operation at which the j th machine prepares a component necessary for the i th machine in the $(r+1)$ st stage $(i, j=1, \cdots, n)$. Then

$$
x_{i}(r+1)=\max \left\{x_{1}(r)+a_{i 1}, \cdots, x_{n}(r)+a_{i n}\right\}, \quad i=1, \cdots, n ; r=0,1, \cdots
$$

or, in max-algebraic notation

$$
\mathbf{x}(r+1)=A \otimes \mathbf{x}(r), \quad r=0,1, \cdots
$$

where $A=\left(a_{i j}\right)$ is the production matrix. We say that the system reaches a steady regime (see e.g. [5]) if it eventually moves forward in regular steps, that is, if for some λ and r_{0} we have $\mathbf{x}(r+1)=\lambda \otimes \mathbf{x}(r)$ for all $r \geq r_{0}$. This implies $A \otimes \mathbf{x}(r)=\lambda \otimes \mathbf{x}(r)$ for all $r \geq r_{0}$. Therefore, the steady regime is reached if and only if for some λ and $r, \mathbf{x}(r)$ is a solution to

$$
A \otimes \mathbf{x}=\lambda \otimes \mathbf{x}
$$

Throughout the paper, for positive integers n, m the symbol $\overline{\mathbb{R}}^{n \times m}$ will denote the set of all $n \times m$ matrices over $\overline{\mathbb{R}}$, and ε is used instead of $-\infty$ and for convenience we also denote by the same symbol any vector or matrix whose every component is ε. Given $A \in \overline{\mathbb{R}}^{n \times n}$, the problem of finding a vector $\mathbf{x} \in \overline{\mathbb{R}}^{n}=\overline{\mathbb{R}}^{n \times 1}, \mathbf{x} \neq \varepsilon$ and a scalar $\lambda \in \overline{\mathbb{R}}$ satisfying

$$
A \otimes \mathbf{x}=\lambda \otimes \mathbf{x}
$$

is called the (max-algebraic) eigenproblem, the vector \mathbf{x} is called an eigenvector and the scalar λ is called an eigenvalue of A.

The eigenproblem is of key importance in max-algebra. It has been studied in research papers from the early 1960's [5]. Full solutions of the eigenproblem in the case of irreducible matrices have been presented in [6], see also [1,8,10,12]. The Spectral Theorem for reducible matrices has been proved in [2] and [9].

Let $A \in \overline{\mathbb{R}}^{n \times n}$ and $\lambda \in \overline{\mathbb{R}}$. A vector $\mathbf{x} \in \overline{\mathbb{R}}^{n}, \mathbf{x} \neq \varepsilon$, satisfying $A \otimes \mathbf{x} \leq \lambda \otimes \mathbf{x}$ is called a subeigenvector of A with associated eigenvalue λ and denote

$$
V_{*}(A, \lambda)=\left\{\mathbf{x} \in \overline{\mathbb{R}}^{n}: A \otimes \mathbf{x} \leq \lambda \otimes \mathbf{x}, \mathbf{x} \neq \varepsilon\right\} .
$$

https://daneshyari.com/en/article/4599487

Download Persian Version:
https://daneshyari.com/article/4599487

Daneshyari.com

[^0]: Supported by the National Natural Science Foundation of China (No. 11171242).

 * Corresponding author. Fax: +862884760788.

 E-mail addresses: xpwang1@hotmail.com (X.-p. Wang), lanhao77@sohu.com (H.-l. Wang).

