

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

The generators of the solution space for a system of inequalities ${}^{\bigstar}$

LINEAR

lications

Xue-ping Wang^{*}, Hui-li Wang

College of Mathematics and Software Science, Sichuan Normal University, Chengdu, Sichuan 610066, People's Republic of China

ARTICLE INFO

Article history: Received 12 November 2013 Accepted 4 July 2014 Available online 26 July 2014 Submitted by P. Butkovic

MSC: 15A80 15A39

Keywords: Max-plus algebra A system of inequalities Supereigenvector Nonnegative elementary cycle Generator Basis

АВЅТ КАСТ

The generators of the solution space for a system of inequalities $A \otimes \mathbf{x} \geq \mathbf{x}$ are considered in this paper, where A is a square matrix over $\mathbb{R} = \mathbb{R} \cup \{-\infty\}$, \mathbf{x} is a column vector and \otimes is a max-plus composition. This paper presents some properties of solutions to the system of inequalities and proposes an algorithm to find a set of generators for the solution space of the system of inequalities with $A \in \mathbb{R}^{n \times n}$.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In max-algebra, $a \oplus b = \max\{a, b\}$, $a \otimes b = a + b$ for $a, b \in \mathbb{R} := \mathbb{R} \cup \{-\infty\}$. The max-plus algebra $(\mathbb{R}, \oplus, \otimes)$ is useful for solving a class of nonlinear problems appearing

* Corresponding author. Fax: +86 28 84760788. E-mail addresses: xpwang1@hotmail.com (X.-p. Wang), lanhao77@sohu.com (H.-l. Wang).

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2014.07.003} 0024-3795 \ensuremath{\oslash} \ensuremath{\mathbb{C}} \ensuremath{2014} \ensuremath{\mathbb{C}} \ensuremath{2014} \ensuremath{\mathbb{C}} \ensuremath{2014} \ensuremath{\mathbb{C}} \e$

 $^{^{*}\,}$ Supported by the National Natural Science Foundation of China (No. 11171242).

for instance in automata theory, scheduling theory, and discrete event systems (see e.g. [6,7,11,14]).

Consider the system in which the machines P_1, \dots, P_n work in stages. In each stage all machines simultaneously produce components necessary for the next stage of some or all other machines. Let $x_i(r)$ be the starting time of the *r*th stage on machine P_i $(i = 1, \dots, n)$ and let a_{ij} denote the duration of the operation at which the *j*th machine prepares a component necessary for the *i*th machine in the (r+1)st stage $(i, j = 1, \dots, n)$. Then

$$x_i(r+1) = \max\{x_1(r) + a_{i1}, \cdots, x_n(r) + a_{in}\}, \quad i = 1, \cdots, n; \ r = 0, 1, \cdots$$

or, in max-algebraic notation

$$\mathbf{x}(r+1) = A \otimes \mathbf{x}(r), \quad r = 0, 1, \cdots$$

where $A = (a_{ij})$ is the production matrix. We say that the system reaches a steady regime (see e.g. [5]) if it eventually moves forward in regular steps, that is, if for some λ and r_0 we have $\mathbf{x}(r+1) = \lambda \otimes \mathbf{x}(r)$ for all $r \geq r_0$. This implies $A \otimes \mathbf{x}(r) = \lambda \otimes \mathbf{x}(r)$ for all $r \geq r_0$. Therefore, the steady regime is reached if and only if for some λ and r, $\mathbf{x}(r)$ is a solution to

$$A \otimes \mathbf{x} = \lambda \otimes \mathbf{x}.$$

Throughout the paper, for positive integers n, m the symbol $\overline{\mathbb{R}}^{n \times m}$ will denote the set of all $n \times m$ matrices over $\overline{\mathbb{R}}$, and ε is used instead of $-\infty$ and for convenience we also denote by the same symbol any vector or matrix whose every component is ε . Given $A \in \overline{\mathbb{R}}^{n \times n}$, the problem of finding a vector $\mathbf{x} \in \overline{\mathbb{R}}^n = \overline{\mathbb{R}}^{n \times 1}$, $\mathbf{x} \neq \varepsilon$ and a scalar $\lambda \in \overline{\mathbb{R}}$ satisfying

$$A \otimes \mathbf{x} = \lambda \otimes \mathbf{x}$$

is called the (max-algebraic) eigenproblem, the vector \mathbf{x} is called an eigenvector and the scalar λ is called an eigenvalue of A.

The eigenproblem is of key importance in max-algebra. It has been studied in research papers from the early 1960's [5]. Full solutions of the eigenproblem in the case of irreducible matrices have been presented in [6], see also [1,8,10,12]. The Spectral Theorem for reducible matrices has been proved in [2] and [9].

Let $A \in \overline{\mathbb{R}}^{n \times n}$ and $\lambda \in \overline{\mathbb{R}}$. A vector $\mathbf{x} \in \overline{\mathbb{R}}^n$, $\mathbf{x} \neq \varepsilon$, satisfying $A \otimes \mathbf{x} \leq \lambda \otimes \mathbf{x}$ is called a subeigenvector of A with associated eigenvalue λ and denote

$$V_*(A,\lambda) = \big\{ \mathbf{x} \in \overline{\mathbb{R}}^n : A \otimes \mathbf{x} \le \lambda \otimes \mathbf{x}, \mathbf{x} \ne \varepsilon \big\}.$$

Download English Version:

https://daneshyari.com/en/article/4599487

Download Persian Version:

https://daneshyari.com/article/4599487

Daneshyari.com