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In this paper, for given operators A ∈ B(H) and B ∈ B(K), 
we completely describe the set of all C ∈ B(K, H) such that 
MC is injective, R(MC) is not dense in H ⊕ K, respectively 
and describe residual and continuous spectrum of the upper 
triangular operator matrix MC .

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let H, K be separable Hilbert spaces and let B(H, K) denote the set of all bounded 
linear operators from H to K. For simplicity, we also write B(H, H) as B(H). For a given 
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A ∈ B(H, K), the symbols N (A) and R(A) denote the null space and the range of A, 
respectively. Let α(A) = dimN (A) and β(A) = codimR(A).

The spectrum σ(A) is split into the point spectrum σp(A), the residual spectrum 
σr(A) and the continuous spectrum σc(A) which are defined by

σp(A) =
{
λ ∈ C: N (A− λI) �= {0}

}
,

σr(A) =
{
λ ∈ C: N (A− λI) = {0}, R(A− λI) �= H

}
,

σc(A) =
{
λ ∈ C: N (A− λI) = {0}, R(A− λI) �= R(A− λI) = H

}
.

It is easy to conclude (see [8, p. 92]) that σp(A), σr(A) and σc(A) are pairwise disjoint 
and

σp(A) ∪ σr(A) ∪ σc(A) = σ(A).

There are many papers which consider some types of invertibility and regularity of 
upper-triangular operator matrices

MC =
(
A C

0 B

)
:
(
H
K

)
→

(
H
K

)

(see [1–9] and references therein), as well as various types of spectra of MC . In particular, 
the continuous, point and residual spectra of MC were considered in [5,9]. In this paper 
we approach the problem using a technique different than those employed in these papers 
and, in addition, for given operators A ∈ B(H) and B ∈ B(K), we completely describe 
the set of all C ∈ B(K, H) such that MC is injective, R(MC) is not dense in H ⊕ K, 
λ ∈ σr(MC) and λ ∈ σc(MC), for some scalar λ, respectively.

Notice that for given A ∈ B(H) and B ∈ B(K), the set of all C ∈ B(K, H) such that 
MC is injective, R(MC) is not dense in H ⊕ K, 0 ∈ σr(MC) and 0 ∈ σc(MC) will be 
denoted by SI(A, B), SND(A, B), SR(A, B), SC(A, B), respectively.

2. The point, residual and continuous spectrum of an operator matrix MC

In [4] and [6], it is proved that for A ∈ B(H) and B ∈ B(K), the operator matrix MC

is invertible for some C ∈ B(K, H) if and only if

(i) A is left invertible,
(ii) B is right invertible,
(iii) N (B) ∼= X/R(A).
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