The point, residual and continuous spectrum of an upper triangular operator matrix

Dragana S. Cvetković-Ilić
University of Niš, Department of Mathematics, Faculty of Sciences and Mathematics, 18000 Niš, Serbia

A R T I C L E I N F O

Article history:

Received 8 January 2014
Accepted 8 July 2014
Available online 31 July 2014
Submitted by Y. Wei

MSC:

47A10
47A53
47A55

Keywords:
Operator matrix
Invertibility
Residual spectrum
Continuous spectrum
Completion

Abstract

In this paper, for given operators $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$, we completely describe the set of all $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_{C} is injective, $\mathcal{R}\left(M_{C}\right)$ is not dense in $\mathcal{H} \oplus \mathcal{K}$, respectively and describe residual and continuous spectrum of the upper triangular operator matrix M_{C}.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{H}, \mathcal{K} be separable Hilbert spaces and let $\mathcal{B}(\mathcal{H}, \mathcal{K})$ denote the set of all bounded linear operators from \mathcal{H} to \mathcal{K}. For simplicity, we also write $\mathcal{B}(\mathcal{H}, \mathcal{H})$ as $\mathcal{B}(\mathcal{H})$. For a given

[^0]$A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$, the symbols $\mathcal{N}(A)$ and $\mathcal{R}(A)$ denote the null space and the range of A, respectively. Let $\alpha(A)=\operatorname{dim} \mathcal{N}(A)$ and $\beta(A)=\operatorname{codim} \mathcal{R}(A)$.

The spectrum $\sigma(A)$ is split into the point spectrum $\sigma_{p}(A)$, the residual spectrum $\sigma_{r}(A)$ and the continuous spectrum $\sigma_{c}(A)$ which are defined by

$$
\begin{aligned}
\sigma_{p}(A) & =\{\lambda \in \mathbb{C}: \mathcal{N}(A-\lambda I) \neq\{0\}\} \\
\sigma_{r}(A) & =\{\lambda \in \mathbb{C}: \mathcal{N}(A-\lambda I)=\{0\}, \overline{\mathcal{R}(A-\lambda I)} \neq \mathcal{H}\} \\
\sigma_{c}(A) & =\{\lambda \in \mathbb{C}: \mathcal{N}(A-\lambda I)=\{0\}, \mathcal{R}(A-\lambda I) \neq \overline{\mathcal{R}(A-\lambda I)}=\mathcal{H}\}
\end{aligned}
$$

It is easy to conclude (see [8, p. 92]) that $\sigma_{p}(A), \sigma_{r}(A)$ and $\sigma_{c}(A)$ are pairwise disjoint and

$$
\sigma_{p}(A) \cup \sigma_{r}(A) \cup \sigma_{c}(A)=\sigma(A)
$$

There are many papers which consider some types of invertibility and regularity of upper-triangular operator matrices

$$
M_{C}=\left(\begin{array}{cc}
A & C \\
0 & B
\end{array}\right):\binom{\mathcal{H}}{\mathcal{K}} \rightarrow\binom{\mathcal{H}}{\mathcal{K}}
$$

(see [1-9] and references therein), as well as various types of spectra of M_{C}. In particular, the continuous, point and residual spectra of M_{C} were considered in [5,9]. In this paper we approach the problem using a technique different than those employed in these papers and, in addition, for given operators $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$, we completely describe the set of all $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_{C} is injective, $\mathcal{R}\left(M_{C}\right)$ is not dense in $\mathcal{H} \oplus \mathcal{K}$, $\lambda \in \sigma_{r}\left(M_{C}\right)$ and $\lambda \in \sigma_{c}\left(M_{C}\right)$, for some scalar λ, respectively.

Notice that for given $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$, the set of all $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_{C} is injective, $\mathcal{R}\left(M_{C}\right)$ is not dense in $\mathcal{H} \oplus \mathcal{K}, 0 \in \sigma_{r}\left(M_{C}\right)$ and $0 \in \sigma_{c}\left(M_{C}\right)$ will be denoted by $S_{I}(A, B), S_{N D}(A, B), S_{R}(A, B), S_{C}(A, B)$, respectively.

2. The point, residual and continuous spectrum of an operator matrix M_{C}

In [4] and [6], it is proved that for $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$, the operator matrix M_{C} is invertible for some $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ if and only if
(i) A is left invertible,
(ii) B is right invertible,
(iii) $\mathcal{N}(B) \cong X / R(A)$.

https://daneshyari.com/en/article/4599491

Download Persian Version:

https://daneshyari.com/article/4599491

Daneshyari.com

[^0]: Supported by Grant No. 174007 of the Ministry of Science, Technology and Development, Republic of Serbia.

 E-mail address: gagamaka@ptt.rs.

