On vector configurations that can be realized in the cone of positive matrices

Péter E. Frenkel ${ }^{\text {a,* }}$, Mihály Weiner ${ }^{\text {b }}$
${ }^{\text {a }}$ Eötvös Loránd University, Department of Algebra and Number Theory, H-1117
Budapest, Pázmány Péter sétány 1/C, Hungary
${ }^{\mathrm{b}}$ Budapest University of Technology and Economics, Department of Analysis, H-1111 Budapest, Müegyetem rkp. 3-9, Hungary

A R T I C L E I N F O

Article history:

Received 13 April 2010
Accepted 15 July 2014
Available online 7 August 2014
Submitted by P. Semrl

MSC:

15B48

Keywords:
Vector configuration
Cone of positive semidefinite matrices
Von Neumann algebra
Trace

A B S T R A C T

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be n vectors in an inner product space. Can we find a dimension d and positive (semidefinite) matrices $A_{1}, \ldots, A_{n} \in M_{d}(\mathbb{C})$ such that $\operatorname{Tr}\left(A_{k} A_{l}\right)=\left\langle\mathbf{v}_{k}, \mathbf{v}_{l}\right\rangle$ for all $k, l=1, \ldots, n$? For such matrices to exist, one must have $\left\langle\mathbf{v}_{k}, \mathbf{v}_{l}\right\rangle \geq 0$ for all $k, l=1, \ldots, n$. We prove that if $n<5$ then this trivial necessary condition is also a sufficient one and find an appropriate example showing that from $n=5$ this is not so - even if we allowed realizations by positive operators in a von Neumann algebra with a faithful normal tracial state. The fact that the first such example occurs at $n=5$ is similar to what one has in the well-investigated problem of positive factorization of positive (semidefinite) matrices. If the matrix $\left(\left\langle\mathbf{v}_{k}, \mathbf{v}_{l}\right\rangle\right)_{(k, l)}$ has a positive factorization, then matrices A_{1}, \ldots, A_{n} as above exist. However, as we show by a large class of examples constructed with the help of the Clifford algebra, the converse implication is false.
© 2014 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

1.1. Motivation

Throughout this paper, the term "positive matrix" will mean "positive semidefinite matrix". The aim of the paper is to study a geometrical property of the cone \mathcal{C}_{d} of positive matrices in $M_{d}(\mathbb{C})$ in the "large dimensional limit": we investigate if a given configuration of vectors can be embedded in \mathcal{C}_{d} for some (possibly very large) $d \in \mathbb{N}$. Note that for $d_{1} \leq d_{2}$ we have $\mathcal{C}_{d_{1}} \hookrightarrow \mathcal{C}_{d_{2}}$ in a natural manner, so if a configuration can be embedded in $\mathcal{C}_{d_{1}}$, then it can be embedded in $\mathcal{C}_{d_{2}}$.

To explain the precise meaning of our question, consider the real vector space formed by the self-adjoint elements of $M_{d}(\mathbb{C})$. It has a natural inner product defined by the formula

$$
\begin{equation*}
\langle A, B\rangle \equiv \frac{1}{d} \operatorname{Tr}(A B) \quad\left(A^{*}=A, B^{*}=B \in M_{d}(\mathbb{C})\right) \tag{1}
\end{equation*}
$$

making it a Euclidean space. Our cone \mathcal{C}_{d} is a convex cone in this space with a "sharp end-point" at zero ${ }^{1}$: if $A, B \in \mathcal{C}_{d}$ then $\langle A, B\rangle \geq 0$.

Suppose we are given n vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ in a Euclidean space. Embedding them in an inner product preserving way in \mathcal{C}_{d} means finding n positive matrices $A_{1}, \ldots, A_{n} \in \mathcal{C}_{d}$ such that

$$
\begin{equation*}
\left\langle\mathbf{v}_{j}, \mathbf{v}_{k}\right\rangle=\left\langle A_{j}, A_{k}\right\rangle \equiv \frac{1}{d} \operatorname{Tr}\left(A_{j} A_{k}\right) \tag{2}
\end{equation*}
$$

Since, as was mentioned, the angle between any two vectors in \mathcal{C}_{d} is $\leq \pi / 2$, one can only hope to embed these vectors if $\left\langle\mathbf{v}_{j}, \mathbf{v}_{k}\right\rangle \geq 0$ for all $j, k=1, \ldots, n$. So suppose this condition is satisfied. Does it follow that the given vectors can be embedded in \mathcal{C}_{d} for some (possibly very large) d ? If not, can we characterize the configurations that can be embedded? To our knowledge, these questions have not been considered in the literature.

We postpone the summary of our results to the next subsection and note that there is a well-investigated problem - namely the problem of positive factorization - which has some relation to our questions. The relation between the two topics will also be discussed in the next subsection; here we shall only explain our original motivation.

If A is positive and $A \neq 0$, then $\operatorname{Tr}(A)>0$, so the affine hyperplane $\{X: \operatorname{Tr}(X)=1\}$ intersects each ray of the cone \mathcal{C}_{d} exactly once and geometric properties of this cone can be equally well studied by considering just the intersection

$$
\begin{equation*}
\mathcal{S}_{d}=\left\{A \in M_{d}(\mathbb{C}): A \geq 0, \operatorname{Tr}(A)=1\right\} \tag{3}
\end{equation*}
$$

[^1]
https://daneshyari.com/en/article/4599499

Download Persian Version:

https://daneshyari.com/article/4599499

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: frenkelp@cs.elte.hu (P.E. Frenkel), mweiner@renyi.hu (M. Weiner).

[^1]: ${ }^{1}$ Actually one has the much stronger property that an element X in this space belongs to the cone \mathcal{C}_{d} if and only if $\langle X, A\rangle \geq 0$ for all $A \in \mathcal{C}_{d}$; i.e. \mathcal{C}_{d} is a self-dual cone.

