Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

The algebra $U_q(\mathfrak{sl}_2)$ in disguise

LINEAR

ations

Sarah Bockting-Conrad, Paul Terwilliger*

Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison, WI 53706-1388, USA

ARTICLE INFO

Article history: Received 11 February 2014 Accepted 17 July 2014 Available online 7 August 2014 Submitted by R. Brualdi

MSC: 17B37

Keywords: Quantum group Quantum enveloping algebra Equitable presentation Tridiagonal pair

ABSTRACT

We discuss a connection between the algebra $U_q(\mathfrak{sl}_2)$ and the tridiagonal pairs of q-Racah type. To describe the connection, let $x, \ y^{\pm 1}, \ z$ denote the equitable generators for $U_q(\mathfrak{sl}_2)$. Let U_q^{\vee} denote the subalgebra of $U_q(\mathfrak{sl}_2)$ generated by $x, \ y^{-1}, \ z$. Using a tridiagonal pair of q-Racah type we construct two finite-dimensional U_q^{\vee} -modules. The constructions yield two nonstandard presentations of U_q^{\vee} by generators and relations. These presentations are investigated in detail.

@ 2014 Elsevier Inc. All rights reserved.

1. Introduction

This paper is about a connection between the algebra $U_q(\mathfrak{sl}_2)$ and a linear-algebraic object called a tridiagonal pair [7]. To describe the connection, we briefly recall the algebra $U_q(\mathfrak{sl}_2)$ [12,13]. We will use the equitable presentation, which was introduced in [11]. Given a field \mathbb{F} , the \mathbb{F} -algebra $U_q(\mathfrak{sl}_2)$ has generators $x, y^{\pm 1}, z$ and relations $yy^{-1} = y^{-1}y = 1$,

E-mail addresses: bockting@math.wisc.edu (S. Bockting-Conrad), terwilli@math.wisc.edu

(P. Terwilliger).

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2014.07.022} 0024-3795/©$ 2014 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

S. Bockting-Conrad, P. Terwilliger / Linear Algebra Appl. 459 (2014) 548-585

$$\frac{qxy - q^{-1}yx}{q - q^{-1}} = 1, \qquad \frac{qyz - q^{-1}zy}{q - q^{-1}} = 1, \qquad \frac{qzx - q^{-1}xz}{q - q^{-1}} = 1.$$

Let U_q^{\vee} denote the subalgebra of $U_q(\mathfrak{sl}_2)$ generated by x, y^{-1}, z . We now briefly turn our attention to tridiagonal pairs. Let V denote a vector space over \mathbb{F} with finite positive dimension. Roughly speaking, a tridiagonal pair on V is a pair of diagonalizable \mathbb{F} -linear maps on V, each acting on the eigenspaces of the other one in a block-tridiagonal fashion. There is a general family of tridiagonal pairs said to have q-Racah type [8, Definition 3.1]. Let \mathbf{A}, \mathbf{A}^* denote a tridiagonal pair on V that has q-Racah type. Associated with this tridiagonal pair are two additional \mathbb{F} -linear maps $K: V \to V$ [4, Definition 3.1] and $B: V \to V$ [4, Definition 3.2], which are roughly described as follows. The maps K, B are diagonalizable, and their eigenspace decompositions are among the split decompositions of V with respect to \mathbf{A}, \mathbf{A}^* [7, Section 4]. According to [4, Lemma 3.6, Theorem 9.9], there exists $a \in \mathbb{F} \setminus \{0, 1, -1\}$ such that

$$\frac{qK\mathbf{A} - q^{-1}\mathbf{A}K}{q - q^{-1}} = aK^2 + a^{-1}I, \qquad \frac{qB\mathbf{A} - q^{-1}\mathbf{A}B}{q - q^{-1}} = a^{-1}B^2 + aI,$$
$$aK^2 - \frac{a^{-1}q - aq^{-1}}{q - q^{-1}}KB - \frac{aq - a^{-1}q^{-1}}{q - q^{-1}}BK + a^{-1}B^2 = 0.$$

The main purpose of this paper is to explain what the above three equations have to do with $U_q(\mathfrak{sl}_2)$. To summarize the answer, consider an \mathbb{F} -algebra defined by generators and relations; the generators are symbols K, B, \mathbf{A} and the relations are the above three equations. We are going to show that this algebra is isomorphic to U_q^{\vee} . The existence of this isomorphism yields a presentation of U_q^{\vee} by generators and relations. There is another presentation of U_q^{\vee} with similar features, obtained by inverting q, a, K, B. In our main results, we describe these two presentations in a comprehensive way that places them in a wider context. We will summarize our results shortly.

In the theory of $U_q(\mathfrak{sl}_2)$, it is convenient to introduce elements ν_x , ν_y , ν_z defined by

$$\nu_x = q(1 - yz), \qquad \nu_y = q(1 - zx), \qquad \nu_z = q(1 - xy).$$

One significance of ν_x , ν_y , ν_z is that

$$\begin{aligned} x\nu_y &= q^2\nu_y x, \qquad x\nu_z = q^{-2}\nu_z x, \\ y\nu_z &= q^2\nu_z y, \qquad y\nu_x = q^{-2}\nu_x y, \\ z\nu_x &= q^2\nu_x z, \qquad z\nu_y = q^{-2}\nu_y z. \end{aligned}$$

We now summarize our results. Fix a nonzero $a \in \mathbb{F}$ such that $a^2 \neq 1$. Define elements X, Z of $U_q(\mathfrak{sl}_2)$ by

$$X = a^{-2}x + (1 - a^{-2})y^{-1}, \qquad Z = a^{2}z + (1 - a^{2})y^{-1}.$$

549

Download English Version:

https://daneshyari.com/en/article/4599504

Download Persian Version:

https://daneshyari.com/article/4599504

Daneshyari.com