

On the typical rank of real bivariate polynomials

Edoardo Ballico¹

Dept. of Mathematics, University of Trento, 38123 Povo (TN), Italy

A R T I C L E I N F O

Article history: Received 14 April 2012 Accepted 1 April 2014 Available online 16 April 2014 Submitted by L.-H. Lim

MSC: 14N05 15A69

Keywords: Typical rank Real bivariate polynomial Symmetric tensor rank Bivariate homogeneous polynomial

ABSTRACT

Here we study the typical rank for real bivariate homogeneous polynomials of degree $d \ge 6$ (the case $d \le 5$ being settled by P. Comon and G. Ottaviani). We prove that d-1 is a typical rank and that if d is odd, then (d+3)/2 is a typical rank. The Comon–Ottaviani conjecture was later completely solved by G. Blekherman.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

For any integer $d \ge 0$ let $\mathbb{K}[x, y]_d$, \mathbb{K} either \mathbb{C} or \mathbb{R} , denote the (d + 1)-dimensional \mathbb{K} -vector space of all degree d bivariate homogeneous polynomials. For any $f \in \mathbb{R}[x, y]_d$ (resp. $f \in \mathbb{C}[x, y]_d$) let Rsr(f) (resp. Csr(f)) denote the minimal integer r such that $f = \sum_{i=1}^d c_i L_i^d$ with $c_i \in \mathbb{R}$ and $L_i \in \mathbb{R}[x, y]_1$ (resp. $c_i \in \mathbb{C}$ and $L_i \in \mathbb{C}[x, y]_1$). The positive integer Rsr(f) (resp. Csr(f)) is called the real (resp. complex) rank of f. If $f \in \mathbb{R}[x, y]_d$, then both Rsr(f) and Csr(f) are defined. Obviously $Rsr(f) \ge Csr(f)$. Quite often strict inequality holds (see e.g. [7] and references therein). The computation

E-mail address: ballico@science.unitn.it.

¹ The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

of the integer Rsr(f) is used in real-life applications ([4,8,10,12] and the introductions of [3,11,13]). However, in many cases coming from Engineering the coefficients of f are known only approximatively. Unfortunately, Rsr(f) is neither upper semicontinuous not lower semicontinuous. Over $\mathbb C$ it is known the existence of a non-empty Zariski open subset \mathcal{U} of $\mathbb{C}[x, y]_d \setminus \{0\}$ such that $Csr(f) = \lfloor (d+2)/2 \rfloor$ for every $f \in \mathcal{U}([7], [9, \S[I.3]))$. We recall that Zariski open implies that \mathcal{U} is dense in $\mathbb{C}[x, y]_d$ for the euclidean topology and that $\mathbb{C}[x, y]_d \setminus \mathcal{U}$ is a union of finitely many differentiable manifolds with real codimension at least 2. In the complex case much more is known, even for $f \in \mathbb{C}[x, y]_d \setminus \mathcal{U}$ $([9, \S1.3], [10, 9.2.2], [6], [3, \S3], [11, Theorem 4.1])$. In the real case the picture is more complicated, because $\mathcal{U} \cap \mathbb{R}[x, y]_d$ may have several connected components. An integer t > 0 is called a *typical rank* in degree d if there is a non-empty open subset V (for the euclidean topology) of the real vector space $\mathbb{R}[x, y]_d$ such that Rsr(f) = t for all $f \in V$. The existence of $\mathcal{U} \subset \mathbb{C}[x, y]_d$ such that $Csr(g) = \lfloor (d+2)/2 \rfloor$ for all $g \in \mathcal{U}$ implies that any typical rank is at least |(d+2)/2|. If t is a typical rank in degree d, then $t \leq d$ [7, Proposition 2.1]. It is well-known that |(d+2)/2| and d are typical ranks and there is a clear description of a euclidean open subset of $\mathbb{R}[x,y]_d$ parametrizing polynomials with real rank d: the set of all polynomials with d distinct real roots ([7, Proposition 3.4], [5, Corollary 1]). P. Comon and G. Ottaviani found all typical ranks for $d \leq 5$ and conjectured that all integers t such that $\lfloor (d+2)/2 \rfloor \leq t \leq d$ are typical ranks for real bivariate forms of degree d.

In this note we prove the following results.

Theorem 1. For each $d \ge 5$ the integer d - 1 is a typical rank for real bivariate degree d forms.

Theorem 2. Fix an odd integer $d = 2m + 1 \ge 5$. Then m + 1, m + 2 and 2m + 1 are typical ranks for real degree d bivariate forms.

It is well-known that $\lfloor (d+2)/2 \rfloor$ is always a typical rank. This observation, [7] and Theorems 1, 2 prove Comon–Ottaviani conjecture if $d \leq 7$, that for any even $d \geq 6$ there are at least 3 typical ranks and that for every odd $d \geq 7$ there are at least 4 typical ranks.

After the submission of this paper G. Blekherman posted his paper [2] in which he proves Comon–Ottaviani conjecture.

2. The proofs

In this paper "Linear subspaces" are projective subspaces of an ambient projective space (over \mathbb{C} or over \mathbb{R}) and "dim" and "dim_R" always denote dimensions of projective spaces.

For any $f \in \mathbb{R}[x, y]_d \setminus \{0\}$ and any $c \in \mathbb{R} \setminus \{0\}$ we have Rsr(f) = Rsr(cf). Hence the question about the real rank is a question concerning polynomials, up to a non-zero scalar

Download English Version:

https://daneshyari.com/en/article/4599528

Download Persian Version:

https://daneshyari.com/article/4599528

Daneshyari.com