

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Interpolation problems for holomorphic functions $\stackrel{\Leftrightarrow}{\sim}$

LINEAR

lications

Ming-Hsiu Hsu $^{\mathrm{a},*},$ Lih-Chung Wang $^{\mathrm{b}},$ Zhen He $^{\mathrm{c}}$

^a Department of Mathematics, National Central University, Chung-Li 32054, Taiwan

^b Department of Applied Mathematics, National Dong Hwa University, Hualien 974, Taiwan

^c Unit 525, 1881 McNicoll Ave., United States

A R T I C L E I N F O

Article history: Received 6 February 2014 Accepted 29 March 2014 Available online 16 April 2014 Submitted by R. Brualdi

MSC: 30E05 47A56

Keywords: Interpolation Positive definite kernel Nevanlinna–Pick problem Corona problem Carathéodory–Fejér problem

1. Introduction

The classical Nevanlinna–Pick problem is to find a holomorphic function from open unit disk to open unit disk taking given points to given points. More precisely, let $\{z_1, \ldots, z_n\}$ and $\{w_1, \ldots, w_n\}$ be two collections of complex numbers in the open unit

* Corresponding author.

ABSTRACT

In this note, we discuss the Nevanlinna–Pick problem, corona problem and Carathéodory–Fejér problem for bounded holomorphic functions.

© 2014 Elsevier Inc. All rights reserved.

 $^{^{\}pm}\,$ The first author is supported by the Taiwan NSC grant 102-2811-M-008-082.

E-mail addresses: hsumh@math.ncu.edu.tw (M.-H. Hsu), lcwang@mail.ndhu.edu.tw (L.-C. Wang), zhenhe@math.ucsb.edu (Z. He).

disk \mathbb{D} . This is the problem of finding a holomorphic function $f : \mathbb{D} \to \overline{\mathbb{D}}$ such that $f(z_i) = w_i$, for all i = 1, ..., n. This problem was independently solved by G. Pick in 1916 and R. Nevanlinna in 1919, respectively. It was proved that such a function exists if and only if the *Pick matrix*

$$\left(\frac{1-\bar{w_i}w_j}{1-\bar{z_i}z_j}\right)_{i,j=1}^n$$

is positive semi-definite. Since then, many types of this problem have been studied over the last few decades. For example, J. Agler extended this problem to the bidisk as follows. Let $\{\alpha_1, \ldots, \alpha_n\}$, $\{\beta_1, \ldots, \beta_n\}$ and $\{z_1, \ldots, z_n\}$ be collections of points in \mathbb{D} . There is a holomorphic function $f : \mathbb{D}^2 \to \overline{\mathbb{D}}$ such that $f(\alpha_i, \beta_i) = z_i$ if and only if there are positive semi-definite matrices Γ and Δ in M_n such that

$$(1 - \overline{z_i} z_j) = (1 - \overline{\alpha_i} \alpha_j) \Gamma_{ij} + (1 - \overline{\beta_i} \beta_j) \Delta_{ij}.$$

J. Agler and J.E. McCarthy solved in [3] the matrix-valued Nevanlinna–Pick problem on the bidisk as follows. Let A_1, \ldots, A_n be $k \times k$ matrices. They showed that there is a holomorphic function $f : \mathbb{D}^2 \to M_k$ with $||f|| \leq 1$ such that $f(\alpha_i, \beta_i) = A_i$ if and only if there are positive semi-definite matrices Γ and Δ in M_{nk} such that

$$\left(I_k - A_i^* A_j\right)_{l;m} = (1 - \overline{\alpha_i} \alpha_j) \Gamma_{i,l;j,m} + (1 - \overline{\beta_i} \beta_j) \Delta_{i,l;j,m}$$

An operator-valued holomorphic function F on the polydisk \mathbb{D}^d is said to be in the Schur–Agler class if

$$\left\|F(T_1,\ldots,T_d)\right\|<1$$

for any commuting d-tuple (T_1, \ldots, T_d) of strict contraction operators on a Hilbert space. J.A. Ball and T.T. Trent studied in [13] the operator-valued Nevanlinna–Pick problems on the polydisk. One of them is as follows. Given n distinct points $\{w^j = (w_1^j, \ldots, w_d^j)\}$ in \mathbb{D}^d , n operators $\{u_j\}$ in the space $B(N_j, H)$ of bounded linear operators between Hilbert spaces, and n operators $\{v_j\}$ in $B(N_j, K)$. Then there is a holomorphic function $F: \mathbb{D}^d \to B(H, K)$ in the Schur–Agler class such that

$$F(w_j)u_j = v_j, \quad \forall j = 1, \dots, n,$$

if and only if there exist positive semi-definite $n \times n$ matrices M^k with matrix entries M_{ij}^k in $B(N_j, N_i)$ such that

$$u_{i}^{*}u_{j} - v_{i}^{*}v_{j} = \sum_{k=1}^{d} (1 - \overline{w}_{k}^{i}w_{k}^{j})N_{ij}^{k}.$$

Download English Version:

https://daneshyari.com/en/article/4599529

Download Persian Version:

https://daneshyari.com/article/4599529

Daneshyari.com