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Since ϕ is not a Jordan isomorphism, we see that the statement “Note that
M1 ∩M2 = 0 as e′Tn′(R)f ′ ∩ f ′Tn′(R)e′ = 0” is false (see [1, p. 4066, line 8]). Therefore,
the proof of [1, Theorem 2.1] is incorrect. We now present a new proof of [1, Theorem 2.1]
as follows:

Proof. We may assume that ϕ(e11) is a nontrivial idempotent in Tn′(R) (see [1, p. 4065,
lines 8–34]).

Set A = R, M = Rn−1, and B = Tn−1(R). Then Tn(R) can be viewed as the triangular
ring

(
A M

B

)
.

Set e = e11 and f =
∑n

i=2 eii. Note that e and f are the units of A and B, respectively.
Set e′ = ϕ(e) and f ′ = ϕ(f). Then both e′ and f ′ are nontrivial idempotents in Tn′(R)
such that e′ + f ′ = 1Tn′ (R) (see [1, p. 4065, lines 35–39]). Thus

Tn′(R) = e′Tn′(R)e′ + e′Tn′(R)f ′ + f ′Tn′(R)e′ + f ′Tn′(R)f ′.

Moreover, ϕ(A) = e′Tn′(R)e′, ϕ(B) = f ′Tn′(R)f ′, and ϕ(M) = e′Tn′(R)f ′ + f ′Tn′(R)e′
as ϕ is surjective (see [1, p. 4066, lines 1–6]).

Set M1 = ϕ−1(e′Tn′(R)f ′) ∩ M and M2 = ϕ−1(f ′Tn′(R)e′) ∩ M . We claim that
ϕ(M1) = e′Tn′(R)f ′ and ϕ(M2) = f ′Tn′(R)e′. For every a + b + m ∈ ϕ−1(e′Tn′(R)f ′),
where a ∈ A, b ∈ B, and m ∈ M , we get that

ϕ(a) + ϕ(b) + ϕ(m) ∈ e′Tn′(R)f ′.

This implies ϕ(a) = 0, ϕ(b) = 0, and ϕ(m) ∈ e′Tn′(R)f ′. It follows that m ∈ M1 and

ϕ(m) = ϕ(a + b + m).

This implies that ϕ(M1) = e′Tn′(R)f ′. Similarly, we get that ϕ(M2) = f ′Tn′(R)e′.
We next claim that M = M1 + M2. For every m ∈ M , we see that

ϕ(m) ∈ e′Tn′(R)f ′ + f ′Tn′(R)e′ = ϕ(M1) + ϕ(M2).

Then there exist m1 ∈ M1, m2 ∈ M2 such that

ϕ(m) = ϕ(m1) + ϕ(m2).

Set m0 = m − m1 − m2. It is clear that ϕ(m0) = 0 and then m0 ∈ M1 ∩ M2. Write
m = (m0 + m1) + m2, where m0 + m1 ∈ M1, m2 ∈ M2. We see that M = M1 + M2.
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