

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

On the equality of generalized matrix functions * M.H. Jafari *, A.R. Madadi

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran

ARTICLE INFO

Article history: Received 25 February 2012 Accepted 12 April 2012 Available online 14 May 2012

Submitted by V. Mehrmann

AMS classification: Primary 15A15 Secondary 20C15

Keywords:
Generalized matrix functions
Determinants
Symmetric groups
Irreducible characters

ABSTRACT

Let H and K be arbitrary subgroups of the symmetric group S_n and let φ and ψ be irreducible characters of H and K, respectively. The main result of this paper is that the two generalized matrix functions d_{φ}^H and d_{ψ}^K are equal on the set of singular matrices if and only if $\varphi_{H\cap K}=\psi_{H\cap K}$ and both of φ and ψ vanish outside of $H\cap K$.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let S_n be the symmetric group of degree n, G an arbitrary subgroup of S_n , and $\chi:G\to\mathbb{C}$ a complex valued function defined on G. Also denote by $M_n(\mathbb{C})$ the set of all n-by-n matrices over \mathbb{C} . We define the function $d_{\chi}^G:M_n(\mathbb{C})\to\mathbb{C}$ as follows:

$$d_{\chi}^{G}(A) = \sum_{\sigma \in G} \chi(\sigma) \prod_{i=1}^{n} a_{i\sigma(i)},$$

where $A=(a_{ij})\in M_n(\mathbb{C})$. The function d_χ^G is called the *generalized matrix function* associated with G and χ . Note that if $G=S_n$ and $\chi=1_G$ is the principal character of G, then d_χ^G is the permanent and if $G=S_n$ and $\chi=\varepsilon$ is the alternating character of G, then d_χ^G is the determinant. It is trivial that if χ and φ are two complex valued functions defined on G and $\chi\in\mathbb{C}$, then $d_{\chi+\chi\varphi}^G=d_\chi^G+\chi d_\varphi^G$. We refer

E-mail addresses: jafari@tabrizu.ac.ir (M.H. Jafari), a-madadi@tabrizu.ac.ir (A.R. Madadi).

[†] This paper is published as part of a research project supported by the University of Tabriz Research Affaires Office (S/27/2257-1).

* Corresponding author.

the reader to [2] and [3] for more deep information about generalized matrix functions. Throughout, let $\hat{\chi}$ be an extension of χ to S_n which vanishes outside of G. It is obvious that $d_{\chi}^G = d_{\hat{\chi}}^{S_n}$.

In this paper we give a necessary and sufficient condition for the equality of two generalized matrix functions. In particular, we show that if $H \subseteq K$ are subgroups of S_n , and if φ and ψ are irreducible characters of H and K, respectively, then $d_{\omega}^{H}(\overline{A}) = d_{\omega}^{K}(A)$ for all singular matrices A if and only if H = Kand $\varphi = \psi$.

2. Main results

For $\sigma \in S_n$, let Fix $(\sigma) = \{i : 1 \le i \le n, (i)\sigma = i\}$ be the set of fixed points of σ and $l(\sigma) = i$ $n-|\operatorname{Fix}(\sigma)|$. Note that for all $\sigma\in S_n$, we have $l(\sigma)\neq 1$. Also, let A_σ be the permutation matrix induced by σ and E_{ij} be an standard matrix unit, i.e. the matrix which has 1 in the (i, j)th entry and zeros elsewhere. The following theorem whose proof is based on a beautiful induction shows that the only generalized matrix functions which act like the determinant are the scalar multiples of the determinant.

Theorem 2.1. Let $G \leq S_n$ and $\chi: G \to \mathbb{C}$ be a nonzero function. Then the following are equivalent:

(i) $d_{\chi}^{G}(A) \neq 0$ for all nonsingular matrices A; (ii) $d_{\chi}^{G}(A) = 0$ for all singular matrices A; (iii) $G = S_{n}$ and $\chi = \chi(1)\varepsilon$.

Proof. If (iii) holds, then $d_{\chi}^{G} = \chi(1)$ det and so we obtain (i) and (ii).

Now we may assume that the case (i) or (ii) holds. First we claim that $\hat{\chi}(\sigma) = \chi(1)\varepsilon(\sigma)$ for all $\sigma \in S_n$. Note that in case (i), for all $\sigma \in S_n$,

$$0 \neq d_{\chi}^{G}(A_{\sigma}) = d_{\hat{\chi}}^{S_{n}}(A_{\sigma}) = \hat{\chi}(\sigma),$$

showing that $G = S_n$, and so $\hat{\chi} = \chi$.

We now prove the claim by induction on $l(\sigma)$. If $l(\sigma) = 0$, then $\sigma = 1$ and the result follows. Suppose that $l(\sigma) \ge 2$ and the assertion is true for all $\tau \in S_n$ with $l(\tau) < l(\sigma)$. Let $\sigma = \sigma_1 \cdots \sigma_r$ be the decomposition of σ into the nontrivial disjoint cycles and let $\sigma_1 = (a_1 \cdots a_s)$. By choosing the permutation τ to be $(a_1a_2)\sigma$ we have that σ is even iff τ is odd, and so $\varepsilon(\sigma) = -\varepsilon(\tau)$. Moreover, $l(\tau) = l(\sigma) - 2$ if s = 2, and $l(\tau) = l(\sigma) - 1$ otherwise. Thus, by induction, we have $\hat{\chi}(\tau) = \chi(1)\varepsilon(\tau)$. Define the matrix A as follows:

$$A = \begin{cases} A_{\sigma} + \alpha E_{a_1 a_1} + E_{a_2 a_2} & \text{if } s = 2 \\ A_{\sigma} + E_{a_1 a_3} + \alpha E_{a_2 a_2} & \text{otherwise} \end{cases}.$$

Since $det(A) = \varepsilon(\sigma) + \alpha \varepsilon(\tau)$, so A is nonsingular iff $\alpha \neq 1$. Also,

$$d_{\chi}^{G}(A) = d_{\hat{\chi}}^{S_n}(A) = \hat{\chi}(\sigma) + \alpha \hat{\chi}(\tau).$$

In case (i), we have $\chi(\sigma) = -\chi(\tau)$ since otherwise by taking $\alpha = -\chi(\sigma)/\chi(\tau)$, we obtain $d_{\chi}^{G}(A) =$ 0, which is a contradiction. Therefore,

$$\chi(\sigma) = -\chi(\tau) = -\chi(1)\varepsilon(\tau) = \chi(1)\varepsilon(\sigma),$$

completing the proof of the theorem in this case.

In case (ii) by taking $\alpha = 1$, we have $d_{\chi}^{G}(A) = 0$. Therefore,

$$\hat{\chi}(\sigma) = -\hat{\chi}(\tau) = -\chi(1)\varepsilon(\tau) = \chi(1)\varepsilon(\sigma),$$

completing the proof of the claim. Now since χ is a nonzero function, we have $\chi(1) \neq 0$, and so $G = S_n$ and $\chi = \chi(1)\varepsilon$. \square

Download English Version:

https://daneshyari.com/en/article/4599543

Download Persian Version:

https://daneshyari.com/article/4599543

<u>Daneshyari.com</u>