

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Jensen and Minkowski inequalities for operator means and anti-norms

LINEAR ALGEBRA and its

Applications

Jean-Christophe Bourin^a, Fumio Hiai^{b,*}

 ^a Laboratoire de Mathématiques, Université de Franche Comté, 25030 Besançon, France
 ^b Tohoku University (Emeritus), Hakusan 3-8-16-303, Abiko 270-1154, Japan

ARTICLE INFO

Article history: Received 2 April 2012 Accepted 17 May 2014 Available online 2 June 2014 Submitted by O.G. Ernst

MSC: 15A60 47A30 47A60

Keywords: Matrix Operator mean Positive linear map Symmetric norm Anti-norm Convex function Concave function Majorization Schur product

ABSTRACT

Jensen inequalities for positive linear maps of Choi and Hansen–Pedersen type are established for a large class of operator/matrix means such as some *p*-means and some Kubo–Ando means. These results are also extensions of the Minkowski determinantal inequality. To this end we develop the study of anti-norms, a notion parallel to the symmetric norms in matrix analysis, including functionals like Schatten *q*-norms for a parameter $q \in (-\infty, 1]$ and the Minkowski functional det^{1/n} A.

© 2014 Elsevier Inc. All rights reserved.

* Corresponding author. E-mail addresses: jcbourin@univ-fcomte.fr (J.-C. Bourin), hiai.fumio@gmail.com (F. Hiai).

1. Introduction

Jensen inequalities for matrices and operators have various versions. The most general ones involve a unital positive linear map $\mathbb{E} : \mathbb{M}_n \to \mathbb{M}_m$. For instance, if f(t) is operator concave on an interval Ω , then

$$f(\mathbb{E}(Z)) \ge \mathbb{E}(f(Z))$$
 (1.1)

for all $Z \in \mathbb{M}_n\{\Omega\}$, the $n \times n$ Hermitian matrices with spectra in Ω . This is Choi's inequality [12], which is specialized to Hansen–Pedersen's inequality [13]

$$f\left(\sum_{i=1}^{k} C_{i}^{*} Z_{i} C_{i}\right) \geq \sum_{i=1}^{k} C_{i}^{*} f(Z_{i}) C_{i}$$
(1.2)

for C^* -convex combinations in $\mathbb{M}_n\{\Omega\}$ with $n \times m$ matrices C_i such that $\sum_{i=1}^k C_i^* C_i = I$, the identity. These Jensen's inequalities are famous characterizations of operator concavity of the function f:

$$f\left(\frac{A+B}{2}\right) \ge \frac{f(A)+f(B)}{2}, \quad A, B \in \mathbb{M}_n\{\Omega\}.$$
(1.3)

Are there similar inequalities by making use of the *p*th power map $\mathbb{E}_p(Z) := \mathbb{E}^{1/p}(Z^p)$ with p > 0? We deal with this question in Section 2. This contains some Jensen type inequalities for the *power p-means*

$$A \beta_p B := \left(\frac{A^p + B^p}{2}\right)^{1/p} \tag{1.4}$$

of two positive operators A, B.

An axiomatic theory on *operator means* (for positive operators on a Hilbert space) was developed by Kubo and Ando [18] related to operator monotone functions. (See [4] for operator monotone and operator convex functions.) Each operator mean σ is associated with a non-negative operator monotone function h(t) on $[0, \infty)$ with h(1) = 1, called the *representing function* of σ , in such a way that

$$A \sigma B = A^{1/2} h (A^{-1/2} B A^{-1/2}) A^{1/2}$$
(1.5)

for every invertible $A, B \in \mathbb{M}_n^+$, the $n \times n$ positive semi-definite matrices. The above expression is further extended to general $A, B \in \mathbb{M}_n^+$ as

$$A \sigma B = \lim_{\varepsilon \searrow 0} (A + \varepsilon I) \sigma (B + \varepsilon I).$$
(1.6)

Download English Version:

https://daneshyari.com/en/article/4599544

Download Persian Version:

https://daneshyari.com/article/4599544

Daneshyari.com