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We study computational methods for obtaining rigorous a poste-
riori error bounds for the inverse square root and the sign func-
tion of an n × n matrix A. Given a computed approximation for
the inverse square root of A, our methods work by using interval
arithmetic to obtain a narrow interval matrix which, with math-
ematical certainty, is known to contain the exact inverse square
root. Particular emphasis is put on the computational efficiency of
the method which has complexity O(n3) and which uses almost
exclusively matrix–matrix operation, a key to the efficient use of
available software for interval computations. The standard formu-
lation of the method assumes that A can be diagonalized and that
the eigenvector matrix of A is well-conditioned. A modification re-
lying on a stable similarlity transformation to block diagonal form
is also developed.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Given a function f : Ω ⊆ C → C, the matrix function f (A) for A ∈ C
n×n is defined as soon as

spec(A) ⊆ Ω and f is s(λ) − 1 times differentiable at any eigenvalue λ of A, where s(λ) denotes the

* Corresponding author.
E-mail addresses: frommer@math.uni-wuppertal.de (A. Frommer), hashemi@sutech.ac.ir (B. Hashemi),

sablik@uni-wuppertal.de (T. Sablik).
1 This research was in part supported by a grant from IPM (No. 91650055).

0024-3795/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.laa.2013.11.047

http://dx.doi.org/10.1016/j.laa.2013.11.047
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
mailto:frommer@math.uni-wuppertal.de
mailto:hashemi@sutech.ac.ir
mailto:sablik@uni-wuppertal.de
http://dx.doi.org/10.1016/j.laa.2013.11.047
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2013.11.047&domain=pdf


200 A. Frommer et al. / Linear Algebra and its Applications 456 (2014) 199–213

index of λ, i.e. the size of the largest Jordan block belonging to λ, and λ lies in the interior of Ω

whenever s(λ) > 1, see [1, Definitions 1.1 and 1.2] or [2, Definition 6.2.4]. In the present work we
consider the matrix inverse square root, f (z) = z−1/2. This matrix function has applications, e.g., in
the optimal symmetric orthogonalization of a set of vectors [3] and the generalized eigenvalue prob-
lem [4]. It also appears in the matrix sign function sign(A) which can be defined as A(A2)−1/2 and
which arises in the solution of algebraic Riccati equations [5] and also in applications from Theoretical
Physics [6].

The complex function, f (z) = z−1/2 has two different branches. Referring to [1] for details,2 it suf-
fices here to indicate that there exist several (primary) inverse square roots of A depending on which
branch of f is used for the different Jordan blocks. If A has no eigenvalues on (−∞,0], the so-called
principal inverse square root (see also [3]) is uniquely defined by requiring that for all λ ∈ spec(A)

the branch of f is chosen such that f (λ) lies in the open right half plane. For the matrix square root
and A non-singular, it has been shown [1, Thm. 1.26] that all primary square roots are isolated (and
non-singular) solutions of the matrix equation X2 − A = 0. Observing that for A non-singular any
solution X of one of the equations

X2 − A−1 = 0, (1a)

X−2 − A = 0, (1b)

X A X − I = 0, (1c)

X2 A − I = 0, (1d)

A X2 − I = 0 (1e)

is non-singular and satisfies (X−1)2 − A = 0, we conclude that a primary inverse square roots is
always an isolated solution of any of the above equations.

Several different iterative schemes are available in the literature for computing the matrix inverse
square root, see e.g. [7–10,3]. All these classical, floating point numerical methods will always yield a
result which is not an exact inverse square root of A but rather an approximation to it. The purpose
of this paper is to propose and analyze an efficient interval-arithmetic based method which, given
a relatively accurate floating point approximation to a primary (usually the principal) inverse square
root, obtains a narrow enclosure for the exact inverse square root. It does so by proving that one of
the equations in (1) has exactly one solution X within a whole set of matrices, represented as an
interval matrix, i.e. a matrix with interval entries. Our approach is based on techniques developed
earlier for the square root in [11].

The paper is organized as follows: In Section 2 we introduce some notation and standard results
which are at the basis of our method. In particular, we discuss the necessary background from interval
analysis. In Section 3 we develop our method for computing enclosures for the inverse square root,
investigate its algorithmic complexity and shortly discuss some variants. We then explain in some
detail how the method can be used to also obtain enclosures for the matrix sign function in Section 4.
Section 5 contains results of numerical experiments, and our conclusions are summarized in Section 6.

2. Preliminaries

Throughout this paper lower case letters are used for scalars and vectors and uppercase letters
for matrices. For A ∈ C

m×n , the vector a = vec(A) ∈ C
mn is obtained by stacking the columns of A.

We will systematically—and often implicitly—use the convention that a lower case letter denotes the
vector obtained via vec from a matrix denoted by the respective uppercase letter.

The point-wise division A./B of two matrices A, B ∈C
m×n is given by

A./B = C ∈C
m×n, where C = (ci j) with ci j = aij/bij.

2 [1] treats the matrix square root, but all considerations there immediately carry over to the inverse square root.
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