From finite line graphs to infinite derived signed graphs

G.R. Vijayakumar
School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India

A R T I C L E I N F O

Article history:

Received 3 January 2014
Accepted 29 March 2014
Available online 24 April 2014
Submitted by R. Brualdi

MSC:

05C22
05C63
05C75

Keywords:
Derived signed graph
Signed graph representation
Signed graph switching equivalence
Innergraph
Minimal nongeneralized line graph

A B S T R A C T

Let X be a subset of $\{ \pm \alpha \pm \beta: \alpha, \beta \in \mathcal{B}$ and $\alpha \neq \beta\}$ where \mathcal{B} is an orthonormal set in an inner product space over \mathbb{R}, such that $x \in X \Rightarrow-x \notin X$. Then the signed graph which is defined as described below is called a derived signed graph: its vertex set is X; two vertices x, y are joined by a positive (negative) edge when $\langle x, y\rangle$ is positive (negative); when $\langle x, y\rangle=0, x, y$ are not joined. Let \mathfrak{D} denote the family of all derived signed graphs-the order of a member of \mathfrak{D} may be infinite. (The family of all generalized line graphsline graphs belong to this family-is a subfamily of \mathfrak{D}.) Let \mathfrak{M} be the class of all minimal nonderivable signed graphs. [\mathfrak{M} includes the 31 (finite) minimal nongeneralized line graphs computed by various methods in the literature.] In this article, we characterize \mathfrak{D}, determine \mathfrak{M} and classify the family of all signed graphs S for which, the following holds: for each finite subset X of $V(S)$, the least eigenvalue of $S[X]$ is at least -2 . The third result substantially generalizes the well known result (Cameron et al. (1976) [1]) on classifying the family of all finite (signed) graphs with least eigenvalues $\geqslant-2$. © 2014 Elsevier Inc. All rights reserved.

[^0]
1. Preliminaries

For unexplained graph theoretic terms and notation, the reader is referred to [18]. For information on inner product spaces, we rely on [7]. Each graph G considered in this article is simple; its order, denoted by $|G|$, need not be finite. A signed graph is a graph in which each edge is termed as positive or negative; a graph from which a signed graph S has been formed, is called the underlying graph of S and denoted by S_{u}. For basic information and various results on the notion of (finite) signed graph, we refer the reader to [19] where this notion is defined in a little more generality: the underlying graph of a signed graph need not be simple. Let x, y be two vertices of a signed graph S; to denote that x and y are joined by a positive edge, we write $\langle\langle x, y\rangle\rangle=1$; by writing ' $\langle\langle x, y\rangle\rangle=-1$ ' we mean that they are joined by a negative edge whereas ' $\langle\langle x, y\rangle\rangle=0$ ' implies that they are not adjacent. The signed graph obtained from S by changing the sign of each edge is denoted by $-S$. A signed graph T is called an innergraph of S, if T_{u} is an induced subgraph of S_{u} and each edge of T_{u} has the same sign in both signed graphs. To denote that a signed graph S^{\prime} is an innergraph of S, we write $S^{\prime} \preccurlyeq S$. If $U \subseteq V(S)$, then the innergraph of S with vertex set U is denoted by $S[U]$. If $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a subset of $V(S)$, then the innergraph T with vertex set X is denoted by $S\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ also and the product of the values assigned to all edges of T by the function $\langle\langle *, *\rangle\rangle$ is denoted by $\sigma(T)$ or $\sigma\left(x_{1} x_{2} \cdots x_{n}\right)$. A signed graph T is called a triangle (quadrangle) if T_{u} is a cycle of order three (four). Let T be a finite innergraph of S; if there is a vertex p in $V(S) \backslash V(T)$ such that $|N(p) \cap V(T)|$ is odd, then T is called odd in S; otherwise it is even in S. We regard any graph G as a signed graph having only positive edges; i.e., it is 'identified' with the signed graph which has no negative edges and whose underlying graph is G.

Normally any term related to graphs is used without any change in its meaning for signed graphs also; however, some terms have to be redefined for signed graphs due to edge-signing; here is one such deviation: The adjacency matrix of a finite signed graph S is obtained from that of its underlying graph by replacing each entry which corresponds to a negative edge by -1 ; i.e., for each $(x, y) \in V(S) \times V(S)$, the entry corresponding to it is $\langle\langle x, y\rangle\rangle$. By an eigenvalue of a finite signed graph, we mean an eigenvalue of its adjacency matrix; since this matrix is real and symmetric, its eigenvalues are real. If S^{\prime} is a finite signed graph and $S^{\prime \prime}$ is an innergraph of S^{\prime}, it can be shown that the least eigenvalue of S^{\prime} is not more than that of $S^{\prime \prime}$. (For a proof, see [6, Theorem 9.1.1].) Let S be a signed graph of any order; the infimum of the least eigenvalues of all finite innergraphs of S-note that by the preceding fact, when $|S|<\infty$, this infimum coincides with the least eigenvalue of S-is defined to be the least eigenvalue of S and denoted by $\lambda(S)$. (For graphs, the notion just defined has been termed in [13] as 'least limiting eigenvalue'.)

A notable property of a finite line graph G is that $\lambda(G) \geqslant-2$. (For a proof, see [6, Lemma 8.6.2]. It is easy to verify that infinite line graphs also have this property.) This fact has prompted many authors to study in detail the family of all finite graphs with least eigenvalues $\geqslant-2$. Hoffman has found an important subfamily of this, whose members are

https://daneshyari.com/en/article/4599563

Download Persian Version:

https://daneshyari.com/article/4599563

Daneshyari.com

[^0]: E-mail address: vijay@math.tifr.res.in.
 http://dx.doi.org/10.1016/j.laa.2014.03.047
 0024-3795/© 2014 Elsevier Inc. All rights reserved.

