

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Schur product techniques for the subnormality of commuting 2-variable weighted shifts $^{\bigstar, \bigstar \bigstar}$

LINEAR ALGEBRA and its

Applications

Jaewoong Kim^a, Jasang Yoon^{b,*}

 ^a Department of Mathematics, Seoul National University, Seoul, 151-742, Republic of Korea
 ^b Department of Mathematics, The University of Texas-Pan American, Edinburg, TX 78539, United States

A R T I C L E I N F O

Article history: Received 20 November 2013 Accepted 8 April 2014 Available online 7 May 2014 Submitted by P. Semrl

MSC:

primary 47A13, 47B20, 47B37 secondary 44A60, 47-04, 47A20

Keywords: Berger measure Commuting pairs of subnormals Joint hyponormality Joint 2-hyponormality Joint subnormality 2-Variable weighted shifts Schur product

ABSTRACT

In this paper, we study the subnormality of 2-variable weighted shifts using the Schur product techniques in matrices and the convolution of two continuous functions. As a consequence, we find the Berger measure of the subnormal weighted shift obtained from the Schur product of two subnormal weighted shifts. As applications, we first give non-trivial, large classes satisfying the Curto–Muhly–Xia conjecture (see the conjecture given below) for 2-variable weighted shifts. We next show when the 2-hyponormality of 2-variable weighted shifts becomes subnormality.

© 2014 Elsevier Inc. All rights reserved.

* Corresponding author. E-mail addresses: kim2@snu.ac.kr (J. Kim), yoonj@utpa.edu (J. Yoon). URL: http://faculty.utpa.edu/yoonj/ (J. Yoon).

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2014.04.013} 0024-3795 \ensuremath{\textcircled{\odot}}\ 0024$ Elsevier Inc. All rights reserved.

 $^{^{\}star}$ The first named author was partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Republic of Korea (2013R1A1A2011574).

 $^{^{\}pm\pm}$ The second named author was partially supported by a Faculty Research Council Grant at the University of Texas–Pan American.

1. Introduction

For matrices $A, B \in M_n(\mathbb{C})$, we let $A \circ B$ denote their *Schur product*, where $(A \circ B)_{i,j} := (A)_{i,j}(B)_{i,j}$ for $1 \leq i,j \leq n$. For bounded sequences of positive real numbers $\alpha \equiv \{\alpha_n\}_{n=0}^{\infty}$ and $\beta \equiv \{\beta_n\}_{n=0}^{\infty}$, the Schur product of α and β is defined by $\alpha \circ \beta := \{\alpha_n \beta_n\}_{n=0}^{\infty}$. The following result is well known: If $A \geq 0$ and $B \geq 0$, then $A \circ B \geq 0$ [30]. Thus, for given two 1-variable subnormal weighted shifts W_{α} and W_{β} , their Schur product $W_{\alpha} \circ W_{\beta}$, which we denote by $W_{\alpha \circ \beta}$, is subnormal. That is, for each $k \geq 1$, if W_{α} and W_{β} are k-hyponormal 1-variable weighted shifts, then the Schur product $W_{\alpha \circ \beta} \equiv W_{\alpha} \circ W_{\beta}$ is also a k-hyponormal 1-variable weighted shift [16]. In an entirely similar way we can define the Schur product of two 2-variable weighted shifts $\mathbf{R} := (R_1, R_2)$ and $\mathbf{S} := (S_1, S_2)$ with, respectively, weights $\boldsymbol{\alpha} \equiv (\alpha_{(k_1, k_2)}^{(1)}, \beta_{(k_1, k_2)}^{(1)})$ and $\boldsymbol{\beta} \equiv (\alpha_{(k_1, k_2)}^{(2)}, \beta_{(k_1, k_2)}^{(2)})$ for $(k_1, k_2) \in \mathbb{Z}_+^2$. That is, we define the Schur product of \mathbf{R} and \mathbf{S} by $\mathbf{R} \circ \mathbf{S} := (R_1 \circ S_1, R_2 \circ S_2)$ with weights $\boldsymbol{\alpha} \circ \boldsymbol{\beta} := (\alpha_{(k_1, k_2)}^{(1)}, \beta_{(k_1, k_2)}^{(2)}, \beta_{(k_1, k_2)}^{(2)})_{k_1, k_2=0}^{\infty}$ (see the weight diagram given in Fig. 1). In [33], the second author of this paper extended the result for 1-variable case given above to 2-variable weighted shifts (see Theorem 3.2 given below).

We recall a well known characterization of subnormality for 2-variable weighted shifts $\mathbf{T} \equiv (T_1, T_2) \equiv W_{(\alpha,\beta)}$ [24], due to C. Berger (cf. [5, III.8.16]): $W_{(\alpha,\beta)}$ admits a commuting normal extension if and only if there is a probability measure μ (called the *Berger measure* of $W_{(\alpha,\beta)}$) defined on the 2-dimensional rectangle $R = [0, a_1] \times [0, a_2]$ (where $a_i := ||T_i||^2$) such that

$$\gamma_{(k_1,k_2)}(W_{(\alpha,\beta)}) = \int_R s^{k_1} t^{k_2} d\mu(s,t), \quad \text{for all } (k_1,k_2) \in \mathbb{Z}^2_+ \quad \text{(called Berger theorem)},$$
(1)

where $\gamma_{(k_1,k_2)}(W_{(\alpha,\beta)})$ is the moment of order (k_1,k_2) for $W_{(\alpha,\beta)}$ (see (4) given below). If $\mathbf{T} \equiv W_{\alpha}$, that is, for 1-variable weighted shifts, W_{α} is subnormal if and only if there exists a probability measure ξ_{α} supported in $[0, \|W_{\alpha}\|^2]$ such that $\gamma_{k_1}(W_{\alpha}) := \alpha_0^2 \cdots \alpha_{k_1-1}^2 = \int s^{k_1} d\xi_{\alpha}(s)$ for all $k_1 \geq 1$.

By the results in [16, Corollary 2.4], [33, Theorem 2.1] and Berger theorem, it is natural to consider the following problems:

Problem 1.1. (i) If W_{α} and W_{β} are both subnormal, then their Schur product $W_{\alpha\circ\beta} \equiv W_{\alpha}\circ W_{\beta}$ is subnormal. In this case, what is the Berger measure of $W_{\alpha\circ\beta}$?

(ii) If **R** and **S** are both subnormal, then their Schur product $\mathbf{R} \circ \mathbf{S}$ is also subnormal. In this case, what is the Berger measure of $\mathbf{R} \circ \mathbf{S}$?

This paper considers the problems given above in Theorems 4.1, 4.2 in Section 4.

We consider an old problem in operator theory, the so-called Lifting Problem for Commuting Subnormals (LPCS): given a commuting pair of subnormal operators on a Download English Version:

https://daneshyari.com/en/article/4599569

Download Persian Version:

https://daneshyari.com/article/4599569

Daneshyari.com