

Self-adjoint extensions for discrete linear Hamiltonian systems

LINEAR ALGEBRA

Applications

Guojing Ren^{a,b}, Yuming Shi^{b,*}

 ^a School of Mathematics and Quantitative Economics, Shandong University of Finance and Economics, Jinan, Shandong 250014, PR China
 ^b School of Mathematics, Shandong University, Jinan, Shandong 250100, PR China

ARTICLE INFO

Article history: Received 4 February 2013 Accepted 12 April 2014 Available online 6 May 2014 Submitted by V. Mehrmann

MSC: 39A70 47B25

Keywords: Discrete linear Hamiltonian system Self-adjoint extension Defect index Limit point case Limit circle case

ABSTRACT

This paper is concerned with self-adjoint extensions for a class of discrete linear Hamiltonian systems. By applying the generalized von Neumann theory and the GKN theory for Hermitian subspaces, a complete characterization of all the self-adjoint subspace extensions for the systems are obtained in terms of boundary conditions via linear independent square summable solutions. As a consequence, characterizations of all the self-adjoint subspace extensions are given in the limit point and limit circle cases. In addition, some sufficient conditions for the corresponding minimal subspace to be an operator or a densely defined operator are given, and consequently, characterizations of all the self-adjoint operator extensions for the system are obtained. In particular, evenorder formally self-adjoint vector difference equations are discussed as a special case.

© 2014 Elsevier Inc. All rights reserved.

* Corresponding author. E-mail addresses: rgjmaths@gmail.com (G. Ren), ymshi@sdu.edu.cn (Y. Shi).

http://dx.doi.org/10.1016/j.laa.2014.04.016 0024-3795/© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Consider the following discrete linear Hamiltonian system:

$$J\Delta y(t) = (P(t) + \lambda W(t))R(y)(t), \quad t \in \mathcal{I},$$
(1.1)

where $\mathcal{I} := \{t\}_{t=a}^{b}$ is an integer interval, a is a finite integer or $a = -\infty$, and b is a finite integer or $b = +\infty$, $b - a \ge 1$; J is the canonical symplectic matrix, i.e.,

$$J = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix},$$

and I_n is the $n \times n$ unit matrix; Δ is the forward difference operator, i.e., $\Delta y(t) = y(t+1) - y(t)$; W(t) and P(t) are $2n \times 2n$ Hermitian matrices, and the weight function $W(t) \geq 0$ for $t \in \mathcal{I}$; the partial right shift operator $R(y)(t) = (u^T(t+1), v^T(t))^T$ with $y(t) = (u^T(t), v^T(t))^T$ and $u(t), v(t) \in \mathbb{C}^n$; and λ is a complex spectral parameter.

Throughout the whole paper, we assume that W(t) is of the block diagonal form,

$$W(t) = \text{diag}\{W_1(t), W_2(t)\},\$$

where $W_i(t) \ge 0$ is an $n \times n$ Hermitian matrix, j = 1, 2. Let P(t) be blocked as

$$P(t) = \begin{pmatrix} -C(t) & A^*(t) \\ A(t) & B(t) \end{pmatrix},$$

where A(t), B(t) and C(t) are $n \times n$ matrices, B(t) and C(t) are Hermitian matrices, and $A^*(t)$ is the complex conjugate transpose of A(t). Then (1.1) can be written as

$$\Delta u(t) = A(t)u(t+1) + (B(t) + \lambda W_2(t))v(t),$$

$$\Delta v(t) = (C(t) - \lambda W_1(t))u(t+1) - A^*(t)v(t), \quad t \in \mathcal{I}.$$

To ensure the existence and uniqueness of the solution of any initial value problem for (1.1), we always assume that

 (A_1) $I_n - A(t)$ is invertible in \mathcal{I} .

Eq. (1.1) contains the following formally self-adjoint vector difference equation of order 2m:

$$\sum_{j=0}^{m} (-1)^j \Delta^j \left[p_j(t) \Delta^j z(t-j) \right] = \lambda w(t) z(t), \quad t \in \mathcal{I},$$
(1.2)

where w(t) and $p_j(t)$, $0 \le j \le m$, are $l \times l$ Hermitian matrices, $w(t) \ge 0$, and $p_m(t)$ is invertible in \mathcal{I} . In fact, by letting $y = (u^T, v^T)^T$ with $u = (u_1^T, u_2^T, \dots, u_m^T)^T$, $v = (v_1^T, v_2^T, \dots, v_m^T)^T$, and Download English Version:

https://daneshyari.com/en/article/4599573

Download Persian Version:

https://daneshyari.com/article/4599573

Daneshyari.com