

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Structure and eigenvalues of heat-bath Markov chains

LINEAR ALGEBRA

Applications

Martin Dyer^{a,1}, Catherine Greenhill^{b,*,2}, Mario Ullrich^{c,3}

^a School of Computing, University of Leeds, Leeds LS2 9JT, UK

^b School of Mathematics and Statistics, The University of New South Wales, Sydney, NSW 2052, Australia

^c Mathematisches Institut, Friedrich-Schiller-Universität, 07743 Jena, Germany

ARTICLE INFO

Article history: Received 11 October 2013 Accepted 10 April 2014 Available online 6 May 2014 Submitted by D.B. Szyld

MSC: 15B51 60J10

Keywords: Stochastic matrices Markov chains Heat-bath Eigenvalues Positive semidefinite

ABSTRACT

We prove that heat-bath chains (which we define in a general setting) have no negative eigenvalues. Two applications of this result are presented: one to single-site heat-bath chains for spin systems and one to a heat-bath Markov chain for sampling contingency tables. Some implications of our main result for the analysis of the mixing time of heat-bath Markov chains are discussed. We also prove an alternative characterisation of heat-bath chains, and consider possible generalisations.

© 2014 Elsevier Inc. All rights reserved.

 $\ensuremath{^*}$ Corresponding author.

E-mail addresses: m.e.dyer@leeds.ac.uk (M. Dyer), csg@unsw.edu.au (C. Greenhill), mario.ullrich@uni-jena.de (M. Ullrich).

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2014.04.018} 0024-3795 \end{tabular} 0024-3795 \end{tabular} 0214 \ \mbox{Elsevier Inc. All rights reserved.}$

 $^{^1}$ Research supported by EPSRC Grant EP/J006300/1 and by a UNSW Faculty of Science Visiting Researcher Fellowship.

² Research supported by Australian Research Council Discovery Project DP120100197.

 $^{^{3}\,}$ Research partially supported by ERC Advanced Grant PTRELSS and DFG Grant DFG GRK 1523.

1. Definitions and our first result

Suppose that Ω is a finite set and let $\pi : \Omega \to (0, 1]$ be a probability distribution on Ω . Let \mathcal{L} be a nonempty finite index set and let $L = |\mathcal{L}|$. Suppose that for all $x \in \Omega$ and $a \in \mathcal{L}$ we have a subset $\Omega_{x,a}$ of Ω such that

- (I) $x \in \Omega_{x,a}$ for all $x \in \Omega$ and $a \in \mathcal{L}$, and
- (II) for each $a \in \mathcal{L}$, the set $\{\Omega_{x,a} : x \in \Omega\}$ forms a partition of Ω .

For $a \in \mathcal{L}$, define the $|\Omega| \times |\Omega|$ matrix P_a (with rows and columns indexed by Ω) by

$$P_a(x,y) = \frac{\pi(y)}{\pi(\Omega_{x,a})} \mathbb{1}(y \in \Omega_{x,a}).$$
(1)

(Here $\mathbb{1}(y \in \Omega_{x,a})$ equals 1 if $y \in \Omega_{x,a}$, and equals 0 otherwise.) Note that P_a is welldefined for all $a \in \mathcal{L}$, since π is nonzero on all states and each set $\Omega_{x,a}$ is nonempty.

Now for a given probability distribution ρ on \mathcal{L} , let P be the $|\Omega| \times |\Omega|$ matrix defined by

$$P = \sum_{a \in \mathcal{L}} \rho(a) P_a.$$
⁽²⁾

Since P is a stochastic matrix, it defines a Markov chain \mathcal{M} on Ω , determined uniquely by π , \mathcal{L} , ρ , and the sets $\Omega_{x,a}$. A transition of \mathcal{M} from current state $x \in \Omega$ is performed by choosing an element $a \in \mathcal{L}$ according to the distribution ρ , then sampling the next state y from $\Omega_{x,a}$ with respect to the distribution π restricted to $\Omega_{x,a}$.

Definition 1.1. A Markov chain \mathcal{M} on a finite state space Ω is a *heat-bath chain* if its transition matrix P satisfies (2) with respect to some finite nonempty set \mathcal{L} equipped with a probability distribution ρ , some probability distribution $\pi : \Omega \to (0, 1]$, and some sets $\Omega_{x,a}$ which satisfy (I), (II). Here the matrices P_a in (2) are defined by (1).

Note that conditions (I) and (II) imply that for all $x, y \in \Omega$ and $a \in \mathcal{L}$,

if
$$y \in \Omega_{x,a}$$
 then $\Omega_{x,a} = \Omega_{y,a}$. (3)

Furthermore, when (2) holds it follows that \mathcal{M} is aperiodic (since every state has a self-loop) and that \mathcal{M} is reversible with respect to π . However, the chain \mathcal{M} need not be irreducible. (See [11] for Markov chain definitions which are not given here.)

Before proceeding, we indicate how our definition of heat-bath chains corresponds to the usual notion of heat-bath chains, in the setting of graph colourings or the Potts model. In such a chain, the state space is a subset of S^V for some finite sets V, S. To express this using our formulation, let $\mathcal{L} = \{a_1, \ldots, a_L\}$ be the set of all those subsets $a_i \subset V$ which may be updated by a single transition of the chain, and, for $a \in \mathcal{L}$, Download English Version:

https://daneshyari.com/en/article/4599575

Download Persian Version:

https://daneshyari.com/article/4599575

Daneshyari.com