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We prove that heat-bath chains (which we define in a general
setting) have no negative eigenvalues. Two applications of
this result are presented: one to single-site heat-bath chains
for spin systems and one to a heat-bath Markov chain
for sampling contingency tables. Some implications of our
main result for the analysis of the mixing time of heat-bath
Markov chains are discussed. We also prove an alternative
characterisation of heat-bath chains, and consider possible
generalisations.
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1. Definitions and our first result

Suppose that Ω is a finite set and let π : Ω → (0, 1] be a probability distribution
on Ω. Let L be a nonempty finite index set and let L = |L|. Suppose that for all x ∈ Ω

and a ∈ L we have a subset Ωx,a of Ω such that

(I) x ∈ Ωx,a for all x ∈ Ω and a ∈ L, and
(II) for each a ∈ L, the set {Ωx,a : x ∈ Ω} forms a partition of Ω.

For a ∈ L, define the |Ω| × |Ω| matrix Pa (with rows and columns indexed by Ω) by

Pa(x, y) = π(y)
π(Ωx,a)

1(y ∈ Ωx,a). (1)

(Here 1(y ∈ Ωx,a) equals 1 if y ∈ Ωx,a, and equals 0 otherwise.) Note that Pa is well-
defined for all a ∈ L, since π is nonzero on all states and each set Ωx,a is nonempty.

Now for a given probability distribution ρ on L, let P be the |Ω|× |Ω| matrix defined
by

P =
∑
a∈L

ρ(a)Pa. (2)

Since P is a stochastic matrix, it defines a Markov chain M on Ω, determined uniquely
by π, L, ρ, and the sets Ωx,a. A transition of M from current state x ∈ Ω is performed
by choosing an element a ∈ L according to the distribution ρ, then sampling the next
state y from Ωx,a with respect to the distribution π restricted to Ωx,a.

Definition 1.1. A Markov chain M on a finite state space Ω is a heat-bath chain if its
transition matrix P satisfies (2) with respect to some finite nonempty set L equipped
with a probability distribution ρ, some probability distribution π : Ω → (0, 1], and some
sets Ωx,a which satisfy (I), (II). Here the matrices Pa in (2) are defined by (1).

Note that conditions (I) and (II) imply that for all x, y ∈ Ω and a ∈ L,

if y ∈ Ωx,a then Ωx,a = Ωy,a. (3)

Furthermore, when (2) holds it follows that M is aperiodic (since every state has a
self-loop) and that M is reversible with respect to π. However, the chain M need not
be irreducible. (See [11] for Markov chain definitions which are not given here.)

Before proceeding, we indicate how our definition of heat-bath chains corresponds
to the usual notion of heat-bath chains, in the setting of graph colourings or the Potts
model. In such a chain, the state space is a subset of SV for some finite sets V , S. To
express this using our formulation, let L = {a1, . . . , aL} be the set of all those subsets
ai ⊂ V which may be updated by a single transition of the chain, and, for a ∈ L,
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