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A ring is called nil-clean if each of its elements is a sum of
an idempotent and a nilpotent. In response to a question of
S. Breaz et al. in [1], we prove that the n×n matrix ring over
a division ring D is a nil-clean ring if and only if D ∼= F2. As
consequences, it is shown that the n × n matrix ring over a
strongly regular ring R is a nil-clean ring if and only if R is
a Boolean ring, and that a semilocal ring R is nil-clean if and
only if its Jacobson radical J(R) is nil and R/J(R) is a direct
product of matrix rings over F2.
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1. Introduction

A ring is called nil-clean if each of its elements is a sum of an idempotent and a nilpo-
tent. Nil-clean rings were extensively investigated by Diesl in [2] and [3]. Motivated by
Diesl’s question whether the matrix ring over a nil-clean ring is again nil-clean, S. Breaz
et al. in [1] proved their main result that the matrix ring Mn(F ) over a field F is nil-
clean if and only if F ∼= F2. This result has several interesting consequences, including a
complete characterization of the finite rank Abelian groups with nil-clean endomorphism
ring (see [1]). The proof of this result heavily relies on the commutativity of a field, and
it was asked in [1] whether the result can be proved for a division ring instead of a field.
As a response to this question, we prove that the matrix ring Mn(D) over a division ring
D is a nil-clean ring if and only if D ∼= F2. As consequences, it is shown that the matrix
ring Mn(R) over a strongly regular ring R is a nil-clean ring if and only if R is a Boolean
ring, and that a semilocal ring R is nil-clean if and only if its Jacobson radical J(R) is
nil and R/J(R) is a direct product of matrix rings over F2 (as suggested in [1]).

Throughout, rings are associative with nonzero identity. The Jacobson radical of a
ring R is denoted by J(R). We write Mn(R) for the n×n matrix ring over R, In for the
n× n identity matrix, and F2 for the field of two elements.

2. The results

Our first lemma was proved in [3], which clearly implies that a nil-clean ring R with
J(R) = 0 has characteristic 2.

Lemma 1. (See [3, Proposition 3.14].) Let R be a nil-clean ring. Then the element 2 is
a (central) nilpotent and, as such, is always contained in J(R).

Our second lemma is the main result in [1].

Lemma 2. (See [1, Theorem 3].) Let F be a field and let n � 1. Then Mn(F ) is a nil-clean
ring if and only if F ∼= F2.

We are now ready to prove our main result.

Theorem 3. Let D be a division ring and let n � 1. Then Mn(D) is a nil-clean ring if
and only if D ∼= F2.

Proof. (⇐=). This is by Lemma 2.
(=⇒). First note that 2 = 0 in D by Lemma 1. Assume on the contrary that D is

not isomorphic to F2. To get a contradiction, take a ∈ D\{0, 1}. Then a, 1 − a are
not nilpotents of D, and this implies that a ∈ D is not a sum of an idempotent and a
nilpotent. Hence the claim holds for n = 1. Let us assume that n � 2. By hypothesis,
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