

When is every matrix over a division ring a sum of an idempotent and a nilpotent?

M. Tamer Koşan^a, Tsiu-Kwen Lee^{b,1}, Yiqiang Zhou^{c,*}

^a Department of Mathematics, Gebze Institute of Technology, Gebze/Kocaeli, Turkey

^b Department of Mathematics, National Taiwan University, Taipei 106, Taiwan

^c Department of Mathematics and Statistics, Memorial University of

Newfoundland, St. John's, NL A1C 5S7, Canada

ARTICLE INFO

Article history: Received 28 October 2013 Accepted 27 February 2014 Available online 17 March 2014 Submitted by P. Semrl

MSC: 15A23 15B33 16S50 16U60

Keywords: Idempotent matrix Nilpotent matrix Nil-clean matrix Matrix ring Semilocal ring Division ring Strongly regular ring

ABSTRACT

A ring is called nil-clean if each of its elements is a sum of an idempotent and a nilpotent. In response to a question of S. Breaz et al. in [1], we prove that the $n \times n$ matrix ring over a division ring D is a nil-clean ring if and only if $D \cong \mathbb{F}_2$. As consequences, it is shown that the $n \times n$ matrix ring over a strongly regular ring R is a nil-clean ring if and only if R is a Boolean ring, and that a semilocal ring R is nil-clean if and only if its Jacobson radical J(R) is nil and R/J(R) is a direct product of matrix rings over \mathbb{F}_2 .

© 2014 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail addresses: mtkosan@gyte.edu.tr (M.T. Koşan), tklee@math.ntu.edu.tw (T.-K. Lee), zhou@mun.ca (Y. Zhou).

¹ Member of Mathematics Division (Taipei Office), National Center for Theoretical Sciences.

1. Introduction

A ring is called nil-clean if each of its elements is a sum of an idempotent and a nilpotent. Nil-clean rings were extensively investigated by Diesl in [2] and [3]. Motivated by Diesl's question whether the matrix ring over a nil-clean ring is again nil-clean, S. Breaz et al. in [1] proved their main result that the matrix ring $\mathbb{M}_n(F)$ over a field F is nilclean if and only if $F \cong \mathbb{F}_2$. This result has several interesting consequences, including a complete characterization of the finite rank Abelian groups with nil-clean endomorphism ring (see [1]). The proof of this result heavily relies on the commutativity of a field, and it was asked in [1] whether the result can be proved for a division ring instead of a field. As a response to this question, we prove that the matrix ring $\mathbb{M}_n(D)$ over a division ring D is a nil-clean ring if and only if $D \cong \mathbb{F}_2$. As consequences, it is shown that the matrix ring $\mathbb{M}_n(R)$ over a strongly regular ring R is a nil-clean ring if and only if R is a Boolean ring, and that a semilocal ring R is nil-clean if and only if its Jacobson radical J(R) is nil and R/J(R) is a direct product of matrix rings over \mathbb{F}_2 (as suggested in [1]).

Throughout, rings are associative with nonzero identity. The Jacobson radical of a ring R is denoted by J(R). We write $\mathbb{M}_n(R)$ for the $n \times n$ matrix ring over R, I_n for the $n \times n$ identity matrix, and \mathbb{F}_2 for the field of two elements.

2. The results

Our first lemma was proved in [3], which clearly implies that a nil-clean ring R with J(R) = 0 has characteristic 2.

Lemma 1. (See [3, Proposition 3.14].) Let R be a nil-clean ring. Then the element 2 is a (central) nilpotent and, as such, is always contained in J(R).

Our second lemma is the main result in [1].

Lemma 2. (See [1, Theorem 3].) Let F be a field and let $n \ge 1$. Then $\mathbb{M}_n(F)$ is a nil-clean ring if and only if $F \cong \mathbb{F}_2$.

We are now ready to prove our main result.

Theorem 3. Let D be a division ring and let $n \ge 1$. Then $\mathbb{M}_n(D)$ is a nil-clean ring if and only if $D \cong \mathbb{F}_2$.

Proof. (\Leftarrow). This is by Lemma 2.

 (\Longrightarrow) . First note that 2 = 0 in D by Lemma 1. Assume on the contrary that D is not isomorphic to \mathbb{F}_2 . To get a contradiction, take $a \in D \setminus \{0, 1\}$. Then a, 1 - a are not nilpotents of D, and this implies that $a \in D$ is not a sum of an idempotent and a nilpotent. Hence the claim holds for n = 1. Let us assume that $n \ge 2$. By hypothesis,

Download English Version:

https://daneshyari.com/en/article/4599589

Download Persian Version:

https://daneshyari.com/article/4599589

Daneshyari.com