

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Permutation-like matrix groups with a maximal cycle of prime square length

LINEAR nd Its

Innlications

Guodong Deng, Yun Fan^{*}

School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China

ARTICLE INFO

Article history: Received 26 November 2013 Accepted 26 February 2014 Available online 18 March 2014 Submitted by R. Brualdi

MSC: 15A18 15A30 20H20

Keywords: Matrix group Matrix similarity Permutation-like group Permutation matrix group

ABSTRACT

A matrix group is said to be permutation-like if any matrix of the group is similar to a permutation matrix. G. Cigler proved that, if a permutation-like matrix group contains a normal cyclic subgroup which is generated by a maximal cycle and the matrix dimension is a prime, then the group is similar to a permutation matrix group. This paper extends the result to the case where the matrix dimension is a square of a prime.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A multiplicative group consisting of complex invertible matrices of size $n \times n$ is said to be a matrix group of dimension n. A matrix group \mathcal{G} is said to be permutation-like if any matrix of \mathcal{G} is similar to a permutation matrix, see [2,3]. If there exists an invertible matrix Q such that $Q^{-1}AQ$ is a permutation matrix for all $A \in \mathcal{G}$, then we say that \mathcal{G}

Corresponding author.

http://dx.doi.org/10.1016/j.laa.2014.02.048 0024-3795/© 2014 Elsevier Inc. All rights reserved.

E-mail addresses: a2b3c4d5deng@163.com (G. Deng), yfan@mail.ccnu.edu.cn (Y. Fan).

is similar to a permutation matrix group, or \mathcal{G} is a permutation matrix group for short. A matrix is called a maximal cycle if it is similar to a permutation matrix corresponding to a cycle permutation with cycle length equal to the dimension. G. Cigler in [3] showed that a permutation-like matrix group is not a permutation matrix group in general, and suggested a conjecture as follows.

Conjecture. A permutation-like matrix group containing a maximal cycle is similar to a permutation matrix group.

G. Cigler in [3] proved it affirmatively in two cases: the dimension ≤ 5 , or the dimension is a prime integer and the cyclic subgroup generated by the maximal cycle is normal.

In this paper we extend the result of [3] to the case where the length of the maximal cycle is a square of a prime.

Theorem 1.1. Let \mathcal{G} be a permutation-like matrix group of dimension p^2 where p is a prime. If \mathcal{G} contains a maximal cycle C such that the subgroup $\langle C \rangle$ generated by C is normal in \mathcal{G} , then \mathcal{G} is a permutation matrix group.

In Section 2 we state some preliminaries as a preparation. The theorem will be proved in Section 3.

2. Preparation

The complex field is denoted by \mathbb{C} . For a positive integer n, by \mathbb{Z}_n^* we denote the multiplicative group consisting of units of the residue ring \mathbb{Z}_n of the integer ring \mathbb{Z} modulo n. A diagonal blocked matrix

$$\begin{pmatrix} B_1 & & \\ & \ddots & \\ & & B_k \end{pmatrix}$$

is denoted by $B_1 \oplus \cdots \oplus B_k$ for short. The identity matrix of dimension n is denoted by $I_{n \times n}$. All complex invertible matrices of dimension n form the so-called general linear group, denoted by $\operatorname{GL}_n(\mathbb{C})$. We denote the characteristic polynomial of a complex matrix A by $\operatorname{char}_A(x)$.

Lemma 2.1. The following two are equivalent to each other:

(i) A is similar to a permutation matrix;

(ii) A is diagonalizable and char_A(x) = $\prod_i (x^{\ell_i} - 1)$.

If it is the case, then each factor $x^{\ell_i} - 1$ of $\operatorname{char}_A(x)$ corresponds to exactly one ℓ_i -cycle of the cycle decomposition of the permutation of the permutation matrix.

Download English Version:

https://daneshyari.com/en/article/4599591

Download Persian Version:

https://daneshyari.com/article/4599591

Daneshyari.com