Regularizing decompositions for matrix pencils and a topological classification of pairs of linear mappings

Vyacheslav Futorny ${ }^{\text {a }}$, Tetiana Rybalkina ${ }^{\text {b }}$, Vladimir V. Sergeichuk ${ }^{\text {b,* }}$
a Department of Mathematics, University of São Paulo, Brazil
b Institute of Mathematics, Tereshchenkivska 3, Kiev, Ukraine

A R T I C L E I N F O

Article history:

Received 21 February 2014
Accepted 4 March 2014
Available online 20 March 2014
Submitted by R.A. Horn

$M S C$:

15A21
37 C 15

Keywords:
Pairs of linear mappings
Matrix pencils
Regularizing decomposition
Topological classification

A B S T R A C T

By Kronecker's theorem, each matrix pencil $A+\lambda B$ over a field \mathbb{F} is strictly equivalent to its regularizing decomposition; i.e., a direct sum

$$
\left(I_{r}+\lambda D\right) \oplus\left(M_{1}+\lambda N_{1}\right) \oplus \cdots \oplus\left(M_{t}+\lambda N_{t}\right)
$$

where D is an $r \times r$ nonsingular matrix and each $M_{i}+\lambda N_{i}$ is of the form $I_{k}+\lambda J_{k}(0), J_{k}(0)+\lambda I_{k}, L_{k}+\lambda R_{k}$, or $L_{k}^{T}+$ λR_{k}^{T}, in which L_{k} and R_{k} are obtained from I_{k} by deleting its last or, respectively, first row and $J_{k}(0)$ is a singular Jordan block.
We give a method for constructing a regularizing decomposition of an $m \times n$ matrix pencil $A+\lambda B$, which is formulated in terms of the linear mappings $A, B: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$.
Two $m \times n$ pencils $A+\lambda B$ and $A^{\prime}+\lambda B^{\prime}$ over $\mathbb{F}=\mathbb{R}$ or \mathbb{C} are said to be topologically equivalent if the pairs of linear mappings $A, B: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ and $A^{\prime}, B^{\prime}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ coincide up to homeomorphisms of the spaces \mathbb{F}^{n} and \mathbb{F}^{m}. We prove that two pencils are topologically equivalent if and only if their regularizing decompositions coincide up to permutation of summands and replacement of D by a nonsingular matrix D^{\prime} such that the linear operators $D, D^{\prime}: \mathbb{F}^{r} \rightarrow \mathbb{F}^{r}$ coincide up to a homeomorphism of \mathbb{F}^{r}.

[^0]
1. Introduction

In this article

- a regularizing decomposition of a matrix pencil is constructed by a method that is formulated in terms of images, preimages, and kernels of linear mappings, and
- the problem of topological classification of pairs of linear mappings $A, B: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ over $\mathbb{F}=\mathbb{R}$ or \mathbb{C} is reduced to the open problem of topological classification of linear operators, which was solved in special cases (in particular, for operators without eigenvalues that are roots of 1) in $[4-9,12,13,18,21]$.

1.1. A regularizing decomposition of matrix pencils

A matrix pencil over a field \mathbb{F} is a parameter matrix $A+\lambda B$, in which A and B are matrices over \mathbb{F} of the same size. Two matrix pencils $A+\lambda B$ and $A^{\prime}+\lambda B^{\prime}$ are strictly equivalent if there exist nonsingular matrices S and R over \mathbb{F} such that $S(A+$ $\lambda B) R=A^{\prime}+\lambda B^{\prime}$. This means that the corresponding matrix pairs (A, B) and $\left(A^{\prime}, B^{\prime}\right)$ are equivalent; i.e.,

$$
\begin{equation*}
S A=A^{\prime} R \quad \text { and } \quad S B=B^{\prime} R \quad \text { for some nonsingular } S \text { and } R . \tag{1}
\end{equation*}
$$

In what follows, we consider matrix pairs (A, B) instead of pencils $A+\lambda B$.
Denote by $J_{k}(0)$ the $k \times k$ singular Jordan block with units under the diagonal. Write

$$
L_{k}:=\left[\begin{array}{cccc}
1 & 0 & & 0 \\
& \ddots & \ddots & \\
0 & & 1 & 0
\end{array}\right], \quad R_{k}:=\left[\begin{array}{cccc}
0 & 1 & & 0 \\
& \ddots & \ddots & \\
0 & & 0 & 1
\end{array}\right] \quad((k-1) \text {-by- } k)
$$

note that $L_{1}=R_{1}=0_{01}$ is the 0×1 matrix of the linear mapping $\mathbb{F} \rightarrow 0$. Kronecker's canonical form for matrix pencils (see [11, Section XII]) ensures that each matrix pair (A, B) over a field \mathbb{F} is equivalent to a direct sum

$$
\begin{equation*}
\left(I_{r}, D\right) \oplus\left(M_{1}, N_{1}\right) \oplus\left(M_{2}, N_{2}\right) \oplus \cdots \oplus\left(M_{t}, N_{t}\right) \tag{2}
\end{equation*}
$$

in which D is an $r \times r$ nonsingular matrix and each $\left(M_{i}, N_{i}\right)$ is one of the matrix pairs

$$
\begin{equation*}
\left(I_{k}, J_{k}(0)\right),\left(J_{k}(0), I_{k}\right),\left(L_{k}, R_{k}\right),\left(L_{k}^{T}, R_{k}^{T}\right), \quad k=1,2, \ldots \tag{3}
\end{equation*}
$$

https://daneshyari.com/en/article/4599596

Download Persian Version:

https://daneshyari.com/article/4599596

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: futorny@ime.usp.br (V. Futorny), rybalkina_t@ukr.net (T. Rybalkina), sergeich@imath.kiev.ua (V.V. Sergeichuk).

