

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Regularizing decompositions for matrix pencils and a topological classification of pairs of linear mappings

LINEAR

olications

Vyacheslav Futorny^a, Tetiana Rybalkina^b, Vladimir V. Sergeichuk^{b,*}

^a Department of Mathematics, University of São Paulo, Brazil

^b Institute of Mathematics, Tereshchenkivska 3, Kiev, Ukraine

ARTICLE INFO

Article history: Received 21 February 2014 Accepted 4 March 2014 Available online 20 March 2014 Submitted by R.A. Horn

MSC: 15A21 37C15

Keywords: Pairs of linear mappings Matrix pencils Regularizing decomposition Topological classification

АВЅТ КАСТ

By Kronecker's theorem, each matrix pencil $A + \lambda B$ over a field \mathbb{F} is strictly equivalent to its *regularizing decomposition*; i.e., a direct sum

 $(I_r + \lambda D) \oplus (M_1 + \lambda N_1) \oplus \cdots \oplus (M_t + \lambda N_t),$

where D is an $r \times r$ nonsingular matrix and each $M_i + \lambda N_i$ is of the form $I_k + \lambda J_k(0)$, $J_k(0) + \lambda I_k$, $L_k + \lambda R_k$, or $L_k^T + \lambda R_k^T$, in which L_k and R_k are obtained from I_k by deleting its last or, respectively, first row and $J_k(0)$ is a singular Jordan block.

We give a method for constructing a regularizing decomposition of an $m \times n$ matrix pencil $A + \lambda B$, which is formulated in terms of the linear mappings $A, B : \mathbb{F}^n \to \mathbb{F}^m$.

Two $m \times n$ pencils $A + \lambda B$ and $A' + \lambda B'$ over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} are said to be *topologically equivalent* if the pairs of linear mappings $A, B : \mathbb{F}^n \to \mathbb{F}^m$ and $A', B' : \mathbb{F}^n \to \mathbb{F}^m$ coincide up to homeomorphisms of the spaces \mathbb{F}^n and \mathbb{F}^m . We prove that two pencils are topologically equivalent if and only if their regularizing decompositions coincide up to permutation of summands and replacement of D by a nonsingular matrix D' such that the linear operators $D, D' : \mathbb{F}^r \to \mathbb{F}^r$ coincide up to a homeomorphism of \mathbb{F}^r .

* Corresponding author.

E-mail addresses: futorny@ime.usp.br (V. Futorny), rybalkina_t@ukr.net (T. Rybalkina), sergeich@imath.kiev.ua (V.V. Sergeichuk).

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2014.03.002} 0024-3795 \end{tabular} 0214$ Elsevier Inc. All rights reserved.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this article

- a regularizing decomposition of a matrix pencil is constructed by a method that is formulated in terms of images, preimages, and kernels of linear mappings, and
- the problem of topological classification of pairs of linear mappings $A, B : \mathbb{F}^n \to \mathbb{F}^m$ over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} is reduced to the open problem of topological classification of linear operators, which was solved in special cases (in particular, for operators without eigenvalues that are roots of 1) in [4–9,12,13,18,21].

1.1. A regularizing decomposition of matrix pencils

A matrix pencil over a field \mathbb{F} is a parameter matrix $A + \lambda B$, in which A and B are matrices over \mathbb{F} of the same size. Two matrix pencils $A + \lambda B$ and $A' + \lambda B'$ are strictly equivalent if there exist nonsingular matrices S and R over \mathbb{F} such that $S(A + \lambda B)R = A' + \lambda B'$. This means that the corresponding matrix pairs (A, B) and (A', B')are equivalent; i.e.,

$$SA = A'R$$
 and $SB = B'R$ for some nonsingular S and R. (1)

In what follows, we consider matrix pairs (A, B) instead of pencils $A + \lambda B$.

Denote by $J_k(0)$ the $k \times k$ singular Jordan block with units under the diagonal. Write

$$L_k := \begin{bmatrix} 1 & 0 & 0 \\ & \ddots & \ddots & \\ 0 & & 1 & 0 \end{bmatrix}, \qquad R_k := \begin{bmatrix} 0 & 1 & 0 \\ & \ddots & \ddots & \\ 0 & & 0 & 1 \end{bmatrix} \quad ((k-1)-\text{by-}k);$$

note that $L_1 = R_1 = 0_{01}$ is the 0×1 matrix of the linear mapping $\mathbb{F} \to 0$. Kronecker's canonical form for matrix pencils (see [11, Section XII]) ensures that each matrix pair (A, B) over a field \mathbb{F} is equivalent to a direct sum

$$(I_r, D) \oplus (M_1, N_1) \oplus (M_2, N_2) \oplus \dots \oplus (M_t, N_t)$$

$$(2)$$

in which D is an $r \times r$ nonsingular matrix and each (M_i, N_i) is one of the matrix pairs

$$(I_k, J_k(0)), (J_k(0), I_k), (L_k, R_k), (L_k^T, R_k^T), k = 1, 2, \dots$$
 (3)

Download English Version:

https://daneshyari.com/en/article/4599596

Download Persian Version:

https://daneshyari.com/article/4599596

Daneshyari.com