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In this paper, we prove the following: Let A be a nonnegative
primitive tensor with order m and dimension n. Then its
primitive degree γ(A) � (n− 1)2 + 1, and the upper bound is
sharp. This confirms a conjecture of Shao [5].

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In [1] and [2], Chang et al. investigated the properties of the spectra of nonnegative
tensors. They defined the irreducibility of tensors, and the primitivity of nonnegative
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tensors, and extended many important properties of primitive matrices of primitive ten-
sors. Recently, as an application of the general tensor product defined by Shao [5], Shao
presented a simple characterization of the primitive tensors in terms of the zero pattern of
the powers of A. He also proposed the following conjecture on the primitive degree γ(A).

Conjecture 1.1. When m is fixed, then there exists some polynomial f(n) on n such that
γ(A) � f(n) for all nonnegative primitive tensors of order m and dimension n.

In this paper, we confirm the conjecture by proving the following theorem.

Theorem 1.2. Let A be a nonnegative primitive tensor with order m and dimension n.
Then its primitive degree γ(A) � (n− 1)2 + 1, and the upper bound is sharp.

2. Preliminaries

An order m and dimension n tensor A = (ai1i2···im)1�ij�n (j=1,...,m) over the complex
field C is a multidimensional array with all entries ai1i2···im ∈ C (i1, . . . , im ∈ [n] =
{1, . . . , n}). The majorization matrix M(A) of the tensor A is defined as (M(A))ij =
aij···j(i, j ∈ [n]) by Pearson [3].

Let A (and B) be an order m � 2 (and k � 1), dimension n tensor, respectively.
Recently, Shao [5] defined a general product AB to be the following tensor D of order
(m− 1)(k − 1) + 1 and dimension n:

diα1···αm−1 =
n∑

i2,...,im=1
aii2···imbi2α1 · · · bimαm−1

(
i ∈ [n], α1, . . . , αm−1 ∈ [n]k−1).

The tensor product possesses a very useful property: the associative law [5, Theo-
rem 1.1]. With the general product, Shao [5] proved some results on the primitivity
and primitive degree of nonnegative tensors. The following result will be used in Defini-
tion 2.3.

Proposition 2.1. (See [5, Proposition 4.1].) Let A be an order m and dimension n non-
negative tensor. Then the following three conditions are equivalent:

(1). For any i, j ∈ [n], aij···j > 0 holds.
(2). For any j ∈ [n], Aej > 0 holds (where ej is the jth column of the identity

matrix In).
(3). For any nonnegative nonzero vector x ∈ Rn, Ax > 0 holds.

Definition 2.2. (See [3, Definition 3.1].) A nonnegative tensor A is called essentially
positive, if it satisfies (3) of Proposition 2.1.

By Proposition 2.1, the following Definition 2.3 is equivalent to Definition 2.2.
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