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1. Results

Let R = M,(F), where n € N and F is a field, and let f: R — R be an F-linear map.
Under some mild conditions, Chebotar, Ke and Lee [1, Theorem 1] investigated such a
map f that f(x)f(y) = 0 whenever zy = 0. As a related result, they [2, Theorem 4.1] also
characterized a surjective linear map preserving square-zero elements in a Lie ideal of R.

Here we consider a similar situation with x f(y) in place of f(z)f(y). From a theorem
due to Chuang and Lee [3, Theorem 2.3], it follows easily that if f satisfies zf(y) = 0
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for all z,y € R with zy = 0, then f is of the form f(z) = za for some a € R. This result
inspires us to investigate the condition that x f(x) = 0 whenever 22 = 0.

Note that any square-zero element in R has zero trace. Therefore, if f assumes the
form f(z) = za + tr(x)b for some fixed a,b € R, then zf(z) = 0 whenever 22 = 0.
We will show that this is the only case for an f with such a property that zf(z) = 0
whenever 22 = 0, except when n = 3 or char F = 2. A more precise statement of our
result is as follows.

Theorem 2.3. Let R = M, (F), where n # 3 and F is a field with char F # 2. Suppose
that f: R — R is an F-linear map. Then the following are equivalent.

(i) xf(x) =0 for all z € R with x* = 0.
(ii) There exist a,b € R such that f(x) = xza + tr(z)b for all x € R.

2. Proofs

We begin with the case n = 2.

Lemma 2.1. Let R = Mo (F'), where F is a field with char F' # 2. Suppose that f: R — R
is an F-linear map such that xf(x) = 0 for all * € R with x®> = 0. Then there exist
a,b € R such that f(z) = xa + tr(z)b for all z € R.

Proof. Since €2, = 0, it follows that ejof(e12) = 0. Analogously, ez f(ea1) = 0.
Since (€11 + €12 — €21 — e22)? = 0, it follows that

0= (e11 +e12 —e21 — e22) fe11 + e12 — €21 — €22)

= (e11 +e12 — e — 622)(f(€11) + f(ei2) — f(ea1) — f(ezz))

and hence

0 = (e11 + e12) (flenr) + f(e12) — flear) — f(ex))
=er1f(enn) +er1fleiz) — e flex) + eraf(er1) —eaf(ear) —eraflea).  (2.1)

Analogously, (€17 — €12 + €21 — e22)? = 0 implies that

0= (e;1 — 612)(f(€11) — f(e12) + f(e2a1) — f(€22))
=enflenn) —enfleiz) — e f(er) —enf(ein) —eaf(ear) +eraflean).  (2.2)

Equating (2.1) and (2.2), we have

e11f(ern) = e1n f(ean) +eiaf(e2r)
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