Linear Algebra and its Applications 450 (2014) 243–249 $\,$

Linear maps characterized by the action on square-zero elements

Hung-Yuan Chen

National Taiwan University, Taipei, Taiwan

ARTICLE INFO

Article history: Received 17 September 2013 Accepted 28 February 2014 Available online 29 March 2014 Submitted by M. Bresar

MSC: 15A15 15A86

Keywords: Linear maps Multiplication maps Trace Matrices Square-zero elements

ABSTRACT

Let $R = M_n(F)$, where $n \in \mathbb{N}$ and F is a field with char $F \neq 2$. We describe a linear map $f: R \to R$ with the property that xf(x) = 0 for all $x \in R$ with $x^2 = 0$.

© 2014 Elsevier Inc. All rights reserved.

1. Results

Let $R = M_n(F)$, where $n \in \mathbb{N}$ and F is a field, and let $f: R \to R$ be an F-linear map. Under some mild conditions, Chebotar, Ke and Lee [1, Theorem 1] investigated such a map f that f(x)f(y) = 0 whenever xy = 0. As a related result, they [2, Theorem 4.1] also characterized a surjective linear map preserving square-zero elements in a Lie ideal of R.

Here we consider a similar situation with xf(y) in place of f(x)f(y). From a theorem due to Chuang and Lee [3, Theorem 2.3], it follows easily that if f satisfies xf(y) = 0

E-mail address: hungyuan.chen@gmail.com.

for all $x, y \in R$ with xy = 0, then f is of the form f(x) = xa for some $a \in R$. This result inspires us to investigate the condition that xf(x) = 0 whenever $x^2 = 0$.

Note that any square-zero element in R has zero trace. Therefore, if f assumes the form $f(x) = xa + \operatorname{tr}(x)b$ for some fixed $a, b \in R$, then xf(x) = 0 whenever $x^2 = 0$. We will show that this is the only case for an f with such a property that xf(x) = 0 whenever $x^2 = 0$, except when n = 3 or char F = 2. A more precise statement of our result is as follows.

Theorem 2.3. Let $R = M_n(F)$, where $n \neq 3$ and F is a field with char $F \neq 2$. Suppose that $f: R \to R$ is an F-linear map. Then the following are equivalent.

(i) xf(x) = 0 for all x ∈ R with x² = 0.
(ii) There exist a, b ∈ R such that f(x) = xa + tr(x)b for all x ∈ R.

2. Proofs

We begin with the case n = 2.

Lemma 2.1. Let $R = M_2(F)$, where F is a field with char $F \neq 2$. Suppose that $f: R \to R$ is an F-linear map such that xf(x) = 0 for all $x \in R$ with $x^2 = 0$. Then there exist $a, b \in R$ such that $f(x) = xa + \operatorname{tr}(x)b$ for all $x \in R$.

Proof. Since $e_{12}^2 = 0$, it follows that $e_{12}f(e_{12}) = 0$. Analogously, $e_{21}f(e_{21}) = 0$. Since $(e_{11} + e_{12} - e_{21} - e_{22})^2 = 0$, it follows that

$$0 = (e_{11} + e_{12} - e_{21} - e_{22})f(e_{11} + e_{12} - e_{21} - e_{22})$$

= $(e_{11} + e_{12} - e_{21} - e_{22})(f(e_{11}) + f(e_{12}) - f(e_{21}) - f(e_{22}))$

and hence

$$0 = (e_{11} + e_{12}) (f(e_{11}) + f(e_{12}) - f(e_{21}) - f(e_{22}))$$

= $e_{11}f(e_{11}) + e_{11}f(e_{12}) - e_{11}f(e_{22}) + e_{12}f(e_{11}) - e_{12}f(e_{21}) - e_{12}f(e_{22}).$ (2.1)

Analogously, $(e_{11} - e_{12} + e_{21} - e_{22})^2 = 0$ implies that

$$0 = (e_{11} - e_{12}) (f(e_{11}) - f(e_{12}) + f(e_{21}) - f(e_{22}))$$

= $e_{11}f(e_{11}) - e_{11}f(e_{12}) - e_{11}f(e_{22}) - e_{12}f(e_{11}) - e_{12}f(e_{21}) + e_{12}f(e_{22}).$ (2.2)

Equating (2.1) and (2.2), we have

$$e_{11}f(e_{11}) = e_{11}f(e_{22}) + e_{12}f(e_{21})$$

Download English Version:

https://daneshyari.com/en/article/4599603

Download Persian Version:

https://daneshyari.com/article/4599603

Daneshyari.com