Linear maps characterized by the action on square-zero elements

Hung-Yuan Chen
National Taiwan University, Taipei, Taiwan

A R T I C L E I N F O

Article history:

Received 17 September 2013
Accepted 28 February 2014
Available online 29 March 2014
Submitted by M. Bresar

MSC:
 15A15
 15A86

Keywords:

Linear maps
Multiplication maps
Trace
Matrices
Square-zero elements

A B S T R A C T
Let $R=\mathrm{M}_{n}(F)$, where $n \in \mathbb{N}$ and F is a field with char $F \neq 2$. We describe a linear map $f: R \rightarrow R$ with the property that $x f(x)=0$ for all $x \in R$ with $x^{2}=0$.
© 2014 Elsevier Inc. All rights reserved.

1. Results

Let $R=\mathrm{M}_{n}(F)$, where $n \in \mathbb{N}$ and F is a field, and let $f: R \rightarrow R$ be an F-linear map. Under some mild conditions, Chebotar, Ke and Lee [1, Theorem 1] investigated such a map f that $f(x) f(y)=0$ whenever $x y=0$. As a related result, they [2, Theorem 4.1] also characterized a surjective linear map preserving square-zero elements in a Lie ideal of R.

Here we consider a similar situation with $x f(y)$ in place of $f(x) f(y)$. From a theorem due to Chuang and Lee [3, Theorem 2.3], it follows easily that if f satisfies $x f(y)=0$

[^0]for all $x, y \in R$ with $x y=0$, then f is of the form $f(x)=x a$ for some $a \in R$. This result inspires us to investigate the condition that $x f(x)=0$ whenever $x^{2}=0$.

Note that any square-zero element in R has zero trace. Therefore, if f assumes the form $f(x)=x a+\operatorname{tr}(x) b$ for some fixed $a, b \in R$, then $x f(x)=0$ whenever $x^{2}=0$. We will show that this is the only case for an f with such a property that $x f(x)=0$ whenever $x^{2}=0$, except when $n=3$ or char $F=2$. A more precise statement of our result is as follows.

Theorem 2.3. Let $R=\mathrm{M}_{n}(F)$, where $n \neq 3$ and F is a field with char $F \neq 2$. Suppose that $f: R \rightarrow R$ is an F-linear map. Then the following are equivalent.
(i) $x f(x)=0$ for all $x \in R$ with $x^{2}=0$.
(ii) There exist $a, b \in R$ such that $f(x)=x a+\operatorname{tr}(x) b$ for all $x \in R$.

2. Proofs

We begin with the case $n=2$.
Lemma 2.1. Let $R=\mathrm{M}_{2}(F)$, where F is a field with char $F \neq 2$. Suppose that $f: R \rightarrow R$ is an F-linear map such that $x f(x)=0$ for all $x \in R$ with $x^{2}=0$. Then there exist $a, b \in R$ such that $f(x)=x a+\operatorname{tr}(x) b$ for all $x \in R$.

Proof. Since $e_{12}^{2}=0$, it follows that $e_{12} f\left(e_{12}\right)=0$. Analogously, $e_{21} f\left(e_{21}\right)=0$.
Since $\left(e_{11}+e_{12}-e_{21}-e_{22}\right)^{2}=0$, it follows that

$$
\begin{aligned}
0 & =\left(e_{11}+e_{12}-e_{21}-e_{22}\right) f\left(e_{11}+e_{12}-e_{21}-e_{22}\right) \\
& =\left(e_{11}+e_{12}-e_{21}-e_{22}\right)\left(f\left(e_{11}\right)+f\left(e_{12}\right)-f\left(e_{21}\right)-f\left(e_{22}\right)\right)
\end{aligned}
$$

and hence

$$
\begin{align*}
0 & =\left(e_{11}+e_{12}\right)\left(f\left(e_{11}\right)+f\left(e_{12}\right)-f\left(e_{21}\right)-f\left(e_{22}\right)\right) \\
& =e_{11} f\left(e_{11}\right)+e_{11} f\left(e_{12}\right)-e_{11} f\left(e_{22}\right)+e_{12} f\left(e_{11}\right)-e_{12} f\left(e_{21}\right)-e_{12} f\left(e_{22}\right) \tag{2.1}
\end{align*}
$$

Analogously, $\left(e_{11}-e_{12}+e_{21}-e_{22}\right)^{2}=0$ implies that

$$
\begin{align*}
0 & =\left(e_{11}-e_{12}\right)\left(f\left(e_{11}\right)-f\left(e_{12}\right)+f\left(e_{21}\right)-f\left(e_{22}\right)\right) \\
& =e_{11} f\left(e_{11}\right)-e_{11} f\left(e_{12}\right)-e_{11} f\left(e_{22}\right)-e_{12} f\left(e_{11}\right)-e_{12} f\left(e_{21}\right)+e_{12} f\left(e_{22}\right) \tag{2.2}
\end{align*}
$$

Equating (2.1) and (2.2), we have

$$
e_{11} f\left(e_{11}\right)=e_{11} f\left(e_{22}\right)+e_{12} f\left(e_{21}\right)
$$

https://daneshyari.com/en/article/4599603

Download Persian Version:

https://daneshyari.com/article/4599603

Daneshyari.com

[^0]: E-mail address: hungyuan.chen@gmail.com.

