The inertia of weighted unicyclic graphs *

Guihai Yu ${ }^{\text {a,b }}$, Xiao-Dong Zhang ${ }^{\text {c,* }}$, Lihua Feng ${ }^{\text {d }}$
${ }^{\text {a }}$ School of Mathematics, Shandong Institute of Business and Technology, Yantai, Shandong, 264005, China
${ }^{\text {b }}$ Center for Combinatorics, Nankai University, Tianjin, 300071, China
${ }^{\text {c }}$ Department of Mathematics and MOE-LSC, Shanghai Jiao Tong University,
Shanghai, 200240, China
${ }^{\text {d }}$ Department of Mathematics, Central South University, Railway Campus, Changsha, Hunan, 410075, China

A R T I C L E I N F O

Article history:

Received 26 February 2013
Accepted 20 January 2014
Available online 6 February 2014
Submitted by R. Brualdi

MSC:

05C50
15A18
Keywords:
Weighted unicyclic graphs
Adjacency matrix
Inertia

Abstract

Let G_{w} be a weighted graph. The inertia of G_{w} is the triple $\operatorname{In}\left(G_{w}\right)=\left(i_{+}\left(G_{w}\right), i_{-}\left(G_{w}\right), i_{0}\left(G_{w}\right)\right)$, where $i_{+}\left(G_{w}\right), i_{-}\left(G_{w}\right)$, $i_{0}\left(G_{w}\right)$ are the numbers of the positive, negative and zero eigenvalues of the adjacency matrix $A\left(G_{w}\right)$ of G_{w} including their multiplicities, respectively. $i_{+}\left(G_{w}\right), i_{-}\left(G_{w}\right)$ are called the positive, negative indices of inertia of G_{w}, respectively. In this paper we present a lower bound for the positive, negative indices of weighted unicyclic graphs of order n with fixed girth and characterize all weighted unicyclic graphs attaining this lower bound. Moreover, we characterize the weighted unicyclic graphs of order n with two positive, two negative and at least $n-6$ zero eigenvalues, respectively.

© 2014 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let G be a simple graph of order n with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$. The adjacency matrix $A(G)=\left(a_{i j}\right)$ of graph G of order n is a symmetric $(0,1)$-matrix such that $a_{i j}=1$ if v_{i} is adjacent to v_{j} and 0 otherwise. A weighted graph G_{w} is a pair (G, w) where G is a simple graph with edge set $E(G)$, called the underlying graph of G_{w}, and w is a weight function from $E(G)$ to the set of nonzero real numbers. The adjacency matrix of G_{w} on n vertices is defined as the matrix $A\left(G_{w}\right)=\left(a_{i j}\right)$ such that $a_{i j}=w\left(v_{i} v_{j}\right)$ if v_{i} is adjacent to v_{j} and 0 otherwise. The characteristic polynomial of G_{w} is the characteristic polynomial of $A\left(G_{w}\right)$, denoted by

$$
P_{G_{w}}(\lambda)=\operatorname{det}\left(\lambda I-A\left(G_{w}\right)\right)=\lambda^{n}+a_{1}^{*} \lambda^{n-1}+\cdots+a_{n}^{*} .
$$

The inertia of G_{w} is defined to be the triple $\operatorname{In}\left(G_{w}\right)=\left(i_{+}\left(G_{w}\right), i_{-}\left(G_{w}\right), i_{0}\left(G_{w}\right)\right)$, where $i_{+}\left(G_{w}\right), i_{-}\left(G_{w}\right), i_{0}\left(G_{w}\right)$ are the numbers of the positive, negative and zero eigenvalues of $A\left(G_{w}\right)$ including multiplicities, respectively. $i_{+}\left(G_{w}\right)$ and $i_{-}\left(G_{w}\right)$ are called the positive, negative indices of inertia (abbreviated positive, negative indices) of G_{w}, respectively. The number $i_{0}\left(G_{w}\right)$ is called the nullity of G_{w}. The rank of an n-vertex graph G_{w}, denoted by $r\left(G_{w}\right)$, is defined as the rank of $A\left(G_{w}\right)$. Obviously, $r\left(G_{w}\right)=i_{+}\left(G_{w}\right)+$ $i_{-}\left(G_{w}\right)=n-i_{0}\left(G_{w}\right)$.

A graph G_{w} is called acyclic (resp. unicyclic, bipartite) if its underlying graph G is acyclic (resp. unicyclic, bipartite). An induced subgraph of G_{w} is an induced subgraph of G with the same weights. For a subgraph H_{w} of G_{w}, let $G_{w}-H_{w}$ be the subgraph obtained from G_{w} by deleting all vertices of H_{w} and all incident edges. For $V^{\prime} \subseteq V\left(G_{w}\right)$, $G_{w}-V^{\prime}$ is the subgraph obtained from G_{w} by deleting all vertices in V^{\prime} and all their incident edges. A vertex of a graph G_{w} is called pendant if it has degree one, and is called quasi-pendant if it is adjacent to a pendant vertex. For a weighted graph G_{w} on at least two vertices, a vertex $v \in V\left(G_{w}\right)$ is called unsaturated in G_{w} if there exists a maximum matching M of G in which no edge is incident with v; otherwise, v is called saturated in G_{w}.

A simple graph may be regarded as a weighted graph in which the weight of each edge is +1 . A signed graph may be regarded as a weighted graph in which the weight of each edge is +1 or -1 . Moreover, the sign of a signed cycle, denoted by $\operatorname{sgn}(C)$, is defined as the sign of the product of all edge weights +1 or -1 on C. The signed cycle C is said to be positive (or negative) if $\operatorname{sgn}(C)=+($ or $\operatorname{sgn}(C)=-)$. A signed graph is said to be balanced if all its cycles are positive, otherwise it is called unbalanced.

The study of eigenvalues of a weighted graph has attracted much attention. Several results about the (Laplacian) spectral radius of weighted graphs were derived in [1, 10,9, $24,25]$. The inertia of unweighted graphs has attracted some attention. Gregory et al. [17] studied the subadditivity of the positive, negative indices of inertia and developed certain properties of Hermitian rank which were used to characterize the biclique decomposition number. Gregory et al. [16] investigated the inertia of a partial join of two graphs and

https://daneshyari.com/en/article/4599621

Download Persian Version:

https://daneshyari.com/article/4599621

Daneshyari.com

[^0]: कt This work was supported by the Natural Science Foundation of China (Nos. 11301302, 11101245, 61202362, 11271256, 11271208), China Postdoctoral Science Foundation (No. 2013M530869), the Natural Science Foundation of Shandong (No. BS2013SF009).

 * Corresponding author.

 E-mail addresses: yuguihai@126.com (G. Yu), xiaodong@sjtu.edu.cn (X.-D. Zhang), fenglh@163.com (L. Feng).

