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Let Gw be a weighted graph. The inertia of Gw is the triple
In(Gw) = (i+(Gw), i−(Gw), i0(Gw)), where i+(Gw), i−(Gw),
i0(Gw) are the numbers of the positive, negative and zero
eigenvalues of the adjacency matrix A(Gw) of Gw including
their multiplicities, respectively. i+(Gw), i−(Gw) are called
the positive, negative indices of inertia of Gw, respectively. In
this paper we present a lower bound for the positive, negative
indices of weighted unicyclic graphs of order n with fixed girth
and characterize all weighted unicyclic graphs attaining this
lower bound. Moreover, we characterize the weighted unicyclic
graphs of order n with two positive, two negative and at least
n− 6 zero eigenvalues, respectively.
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1. Introduction

Let G be a simple graph of order n with vertex set V (G) = {v1, v2, . . . , vn} and
edge set E(G). The adjacency matrix A(G) = (aij) of graph G of order n is a symmet-
ric (0, 1)-matrix such that aij = 1 if vi is adjacent to vj and 0 otherwise. A weighted
graph Gw is a pair (G,w) where G is a simple graph with edge set E(G), called the
underlying graph of Gw, and w is a weight function from E(G) to the set of nonzero
real numbers. The adjacency matrix of Gw on n vertices is defined as the matrix
A(Gw) = (aij) such that aij = w(vivj) if vi is adjacent to vj and 0 otherwise. The
characteristic polynomial of Gw is the characteristic polynomial of A(Gw), denoted by

PGw
(λ) = det

(
λI −A(Gw)

)
= λn + a∗1λ

n−1 + · · · + a∗n.

The inertia of Gw is defined to be the triple In(Gw) = (i+(Gw), i−(Gw), i0(Gw)), where
i+(Gw), i−(Gw), i0(Gw) are the numbers of the positive, negative and zero eigenvalues of
A(Gw) including multiplicities, respectively. i+(Gw) and i−(Gw) are called the positive,
negative indices of inertia (abbreviated positive, negative indices) of Gw, respectively.
The number i0(Gw) is called the nullity of Gw. The rank of an n-vertex graph Gw,
denoted by r(Gw), is defined as the rank of A(Gw). Obviously, r(Gw) = i+(Gw) +
i−(Gw) = n− i0(Gw).

A graph Gw is called acyclic (resp. unicyclic, bipartite) if its underlying graph G is
acyclic (resp. unicyclic, bipartite). An induced subgraph of Gw is an induced subgraph
of G with the same weights. For a subgraph Hw of Gw, let Gw − Hw be the subgraph
obtained from Gw by deleting all vertices of Hw and all incident edges. For V ′ ⊆ V (Gw),
Gw − V ′ is the subgraph obtained from Gw by deleting all vertices in V ′ and all their
incident edges. A vertex of a graph Gw is called pendant if it has degree one, and is
called quasi-pendant if it is adjacent to a pendant vertex. For a weighted graph Gw on
at least two vertices, a vertex v ∈ V (Gw) is called unsaturated in Gw if there exists a
maximum matching M of G in which no edge is incident with v; otherwise, v is called
saturated in Gw.

A simple graph may be regarded as a weighted graph in which the weight of each edge
is +1. A signed graph may be regarded as a weighted graph in which the weight of each
edge is +1 or −1. Moreover, the sign of a signed cycle, denoted by sgn(C), is defined as
the sign of the product of all edge weights +1 or −1 on C. The signed cycle C is said to
be positive (or negative) if sgn(C) = + (or sgn(C) = −). A signed graph is said to be
balanced if all its cycles are positive, otherwise it is called unbalanced.

The study of eigenvalues of a weighted graph has attracted much attention. Several
results about the (Laplacian) spectral radius of weighted graphs were derived in [1,10,9,
24,25]. The inertia of unweighted graphs has attracted some attention. Gregory et al. [17]
studied the subadditivity of the positive, negative indices of inertia and developed certain
properties of Hermitian rank which were used to characterize the biclique decomposition
number. Gregory et al. [16] investigated the inertia of a partial join of two graphs and
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