

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

The minimum rank of a sign pattern matrix with a 1-separation

Marina Arav^a, Frank J. Hall^a, Zhongshan Li^a, Hein van der Holst^{a,*,1}, Lihua Zhang^a, Wenyan Zhou^b

 $^{\rm a}$ Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA

ARTICLE INFO

Article history: Received 31 July 2013 Accepted 16 January 2014 Available online 5 February 2014 Submitted by S. Fallat

MSC: 15B35 15A03

Keywords: Sign pattern matrix Minimum rank 1-Separation

ABSTRACT

A sign pattern matrix is a matrix whose entries are from the set $\{+,-,0\}$. If A is an $m \times n$ sign pattern matrix, the qualitative class of A, denoted Q(A), is the set of all real $m \times n$ matrices $B = [b_{i,j}]$ with $b_{i,j}$ positive (respectively, negative, zero) if $a_{i,j}$ is + (respectively, -, 0). The minimum rank of a sign pattern matrix A, denoted mr(A), is the minimum of the ranks of the real matrices in Q(A). Determination of the minimum rank of a sign pattern matrix is a longstanding open problem.

For the case that the sign pattern matrix has a 1-separation, we present a formula to compute the minimum rank of a sign pattern matrix using the minimum ranks of certain generalized sign pattern matrices associated with the 1-separation.

© 2014 Elsevier Inc. All rights reserved.

^b Department of Mathematics, University of West Georgia, Carrollton, GA 30118, USA

^{*} Corresponding author.

E-mail address: hvanderholst@gsu.edu (H. van der Holst).

¹ Research partially supported by a Cleon C. Arrington Research Initiation Grant of Georgia State University.

0. Introduction

A sign pattern matrix (or sign pattern) is a matrix whose entries are from the set $\{+,-,0\}$. If $B=[b_{i,j}]$ is a real matrix, then $\operatorname{sgn}(B)$ is the sign pattern matrix $A=[a_{i,j}]$ with $a_{i,j}=+$ (respectively, -, 0) if $b_{i,j}$ is positive (respectively, negative, zero). If A is a sign pattern matrix, the sign pattern class of A, denoted Q(A), is the set of all real matrices $B=[b_{i,j}]$ with $\operatorname{sgn}(B)=A$. The minimum rank of a sign pattern matrix A, denoted $\operatorname{mr}(A)$, is the minimum of the ranks of matrices in Q(A); see [5]. Recently, Li et al. [7] obtained a characterization of sign pattern matrices A with $\operatorname{mr}(A) \leq 2$. In this paper, we present a formula to compute the minimum rank of a sign pattern matrix with a 1-separation using the minimum ranks of certain generalized sign pattern matrices associated with the 1-separation.

The notion of sign pattern matrix can be extended to generalized sign pattern matrices by allowing certain entries to be #; see [5]. For a generalized sign pattern matrix A, the generalized sign pattern class of A, denoted Q(A), is defined by allowing entries of a matrix $B = [b_{i,j}] \in Q(A)$ to be any real number if the corresponding entries of A are #. The minimum rank $\operatorname{mr}(A)$ of a generalized sign pattern matrix A is defined in the same way as for a sign pattern matrix: $\operatorname{mr}(A)$ is the minimum of the ranks of matrices in Q(A). If $A = [a_{i,j}]$ and $C = [c_{i,j}]$ are generalized sign pattern matrices of the same size, we write $A \leqslant C$ if for each entry of A, $a_{i,j} = c_{i,j}$ or $c_{i,j} = \#$. It is clear that if $A \leqslant C$, then $Q(A) \subseteq Q(C)$. For a generalized sign pattern C, let C be the set of all sign pattern matrices A such that $A \leqslant C$. Then, clearly, $Q(C) = \bigcup_{A \in C} Q(A)$. Hence the minimum rank of a generalized sign pattern matrix C equals $\min_{A \in C} \operatorname{mr}(A)$.

We define subtraction of two elements from $\{+, -, 0\}$ as follows:

1.
$$(+) - (0) = +$$
, $(0) - (-) = +$, $(+) - (-) = +$,

2.
$$(-)$$
 - $(+)$ = -, (0) - $(+)$ = -, $(-)$ - (0) = -,

3.
$$(0) - (0) = 0$$
,

4.
$$(+) - (+) = \#, (-) - (-) = \#.$$

The idea behind the definition of, for example, (-) - (+) = - is that subtracting a positive number from a negative number gives a negative number.

Let

$$M = \begin{bmatrix} A_{1,1} & A_{1,2} & 0 \\ A_{2,1} & a_{2,2} & A_{2,3} \\ 0 & A_{3,2} & A_{3,3} \end{bmatrix}$$

be a sign pattern matrix, where $A_{1,2}$ and $A_{3,2}$ have only one column, and $A_{2,1}$ and $A_{2,3}$ have only one row. We also say that the sign pattern matrix M has a 1-separation. For $p \in \{+, -, 0\}$, let

Download English Version:

https://daneshyari.com/en/article/4599624

Download Persian Version:

https://daneshyari.com/article/4599624

<u>Daneshyari.com</u>