

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Extended-valued topical and anti-topical functions on semimodules

LINEAR ALGEBRA

Applications

Ivan Singer^{a,*}, Viorel Nitica^{b,a}

 ^a Institute of Mathematics, P.O. Box 1-764, Bucharest, Romania
^b Department of Mathematics, West Chester University, West Chester, PA 19383, United States

ARTICLE INFO

Article history: Received 2 December 2012 Accepted 19 December 2013 Available online 11 January 2014 Submitted by B. Lemmens

MSC: primary 06F07, 26B25 secondary 52A01, 06F20

Keywords: Semifield Semimodule b-Complete Extended product Extended-valued function Topical function Anti-topical function Elementary topical function Fenchel-Moreau conjugate Biconjugate Support function Polar Bipolar Support set Downward set Subdifferential

ABSTRACT

In the papers [16] and [17] we have studied functions defined on a b-complete idempotent semimodule X over a b-complete idempotent semifield $\mathcal{K} = (\mathcal{K}, \oplus, \otimes)$, with values in \mathcal{K} , where \mathcal{K} may (or may not) contain a greatest element sup \mathcal{K} , and the residuation x/y is not defined for $x \in X$ and $y = \inf X$. In the present paper we assume that \mathcal{K} has no greatest element, then adjoin to \mathcal{K} an outside "greatest element" $\top = \sup \mathcal{K}$ and extend the operations \oplus and \otimes from \mathcal{K} to $\overline{\mathcal{K}} := \mathcal{K} \cup \{\top\}$, so as to obtain a meaning also for $x/\inf X$, for any $x \in X$, and study functions with values in $\overline{\mathcal{K}}$. In fact we consider two different extensions of the product \otimes from \mathcal{K} to $\overline{\mathcal{K}}$, denoted by \otimes and $\dot{\otimes}$ respectively, and use them to give characterizations of topical (i.e. increasing homogeneous, defined with the aid of \otimes) and anti-topical (i.e. decreasing anti-homogeneous, defined with the aid of $\dot{\otimes}$) functions in terms of some inequalities. Next we introduce and study for functions $f: X \to \overline{\mathcal{K}}$ their conjugates and biconjugates of Fenchel-Moreau type with respect to the coupling functions $\varphi(x,y) = x/y, \forall x, y \in X$, and $\psi(x,(y,d)) := \inf\{x/y,d\}, \forall x, y \in X, \forall d \in \overline{\mathcal{K}}, \text{ and use}$ them to obtain characterizations of topical and anti-topical functions. In the subsequent sections we consider for the coupling functions φ and ψ some concepts that have been studied in Rubinov and Singer (2001) [11] and Singer (2004) [15] for the so-called "additive min-type coupling functions" $\pi_{\mu}: R_{\max}^n \times R_{\max}^n \to R_{\max} \text{ and } \pi_{\mu}: A^n \times A^n \to A \text{ respectively,}$ where A is a conditionally complete lattice ordered group and $\pi_{\mu}(x,y) := \inf_{1 \leq i \leq n} (x_i + y_i), \forall x, y \in \mathbb{R}^n_{\max} \text{ (or } A^n).$ Thus, we

* Corresponding author.

E-mail addresses: ivan.singer@imar.ro (I. Singer), vnitica@wcupa.edu (V. Nitica).

0024-3795/\$ – see front matter @ 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.laa.2013.12.025 study the polars of a set $G \subseteq X$ for the coupling functions φ and ψ , and we consider for a function $f: X \to \overline{\mathcal{K}}$ the notion of support set of f with respect to the set $\widetilde{\mathcal{T}}$ of all "elementary topical functions" $\widetilde{t}_y(x) := x/y, \forall x \in X, \forall y \in X \setminus \{\inf X\}$ and two concepts of support set of f at a point $x_0 \in X$. The main differences between the properties of the conjugations with respect to the coupling functions φ, ψ and π_{μ} and between the properties of the polars of a set G with respect to the coupling functions φ, ψ and π_{μ} are caused by the fact that while π_{μ} is symmetric, with values only in R_{\max} (resp. A), φ and ψ are not symmetric and take values also outside R_{\max} (resp. A).

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In the previous papers [16] and [17], attempting to contribute to the construction of a theory of functional analysis and convex analysis in semimodules over semifields, we have studied topical functions $f: X \to \mathcal{K}$ and related classes of functions, where X is a b-complete idempotent semimodule over a b-complete idempotent semifield \mathcal{K} . We recall that $f: X \to \mathcal{K}$ is called *topical* if it is *increasing* (i.e., the relations $x', x'' \in X, x' \leq x''$ imply $f(x') \leq f(x'')$, where \leq denotes the canonical order on \mathcal{K} , respectively on X, defined by $\lambda \leq \mu \Leftrightarrow \lambda \oplus \mu = \mu, \forall \lambda \in \mathcal{K}, \forall \mu \in \mathcal{K}$, respectively by $x \leq y \Leftrightarrow x \oplus y = y$, $\forall x \in X, \forall y \in X$, and homogeneous (i.e., $f(\lambda x) = \lambda f(x)$ for all $x \in X, \lambda \in \mathcal{K}$, where $\lambda x := \lambda \otimes x, \lambda f(x) = \lambda \otimes f(x)$; the fact that we use the same notations for addition \oplus both in \mathcal{K} and in X and for multiplication \otimes both in \mathcal{K} and in $\mathcal{K} \times X$ will lead to no confusion). These definitions will be used also when \mathcal{K} is replaced by $R = ((-\infty, +\infty), \oplus = \max,$ $\otimes = +$) although it is not a semiring, and X is replaced by \mathbb{R}^n . Let us also recall that an idempotent semiring \mathcal{K} , that is, a semiring with idempotent addition \oplus (i.e. such that $\lambda \oplus \lambda = \lambda$ for all $\lambda \in \mathcal{K}$) or an idempotent semimodule X (over an idempotent semiring \mathcal{K}) is called *b*-complete, if it is closed under the sum \oplus of any subset (order-) bounded from above and the multiplication \otimes distributes over such sums.

As in [16] and [17], we shall make the following *basic assumptions*:

- (A0') $\mathcal{K} = (\mathcal{K}, \oplus, \otimes)$ is a *b*-complete idempotent semifield (i.e., a *b*-complete idempotent semiring in which every $\mu \in \mathcal{K} \setminus \{\varepsilon\}$ is invertible for the multiplication \otimes , where ε denotes the neutral element of (\mathcal{K}, \oplus)), and the supremum of each (order-) bounded from above subset of \mathcal{K} belongs to \mathcal{K} ; also, X is a *b*-complete idempotent semimodule over \mathcal{K} . In the sequel we shall omit the word "idempotent"; this will lead to no confusion.
- (A1) For all elements $x \in X$ and $y \in X \setminus \{\inf X\}$ the set $\{\lambda \in \mathcal{K} \mid \lambda y \leq x\}$ is (order-) bounded from above, where \leq denotes the canonical order on \mathcal{K} , respectively on X.

Remark 1. a) It is easy to see that an idempotent semifield \mathcal{K} has no greatest element $\sup \mathcal{K}$, unless $\mathcal{K} = \{\varepsilon\}$ or $\mathcal{K} = \{\varepsilon, e\}$, where ε and e denote the neutral elements of (\mathcal{K}, \oplus)

Download English Version:

https://daneshyari.com/en/article/4599643

Download Persian Version:

https://daneshyari.com/article/4599643

Daneshyari.com