Extended-valued topical and anti-topical functions on semimodules

Ivan Singer ${ }^{\text {a,* }}$, Viorel Nitica ${ }^{\text {b,a }}$
${ }^{\text {a }}$ Institute of Mathematics, P.O. Box 1-764, Bucharest, Romania
${ }^{\text {b }}$ Department of Mathematics, West Chester University, West Chester, PA 19383, United States

A R T I C L E I N F O

Article history:

Received 2 December 2012
Accepted 19 December 2013
Available online 11 January 2014
Submitted by B. Lemmens

MSC:

primary 06F07, 26B25
secondary 52A01, 06F20

Keywords:

Semifield
Semimodule
b-Complete
Extended product
Extended-valued function
Topical function
Anti-topical function
Elementary topical function
Fenchel-Moreau conjugate
Biconjugate
Support function
Polar
Bipolar
Support set
Downward set
Subdifferential

A B S T R A C T

In the papers [16] and [17] we have studied functions defined on a b-complete idempotent semimodule X over a b-complete idempotent semifield $\mathcal{K}=(\mathcal{K}, \oplus, \otimes)$, with values in \mathcal{K}, where \mathcal{K} may (or may not) contain a greatest element $\sup \mathcal{K}$, and the residuation x / y is not defined for $x \in X$ and $y=\inf X$. In the present paper we assume that \mathcal{K} has no greatest element, then adjoin to \mathcal{K} an outside "greatest element" $T=\sup \mathcal{K}$ and extend the operations \oplus and \otimes from \mathcal{K} to $\overline{\mathcal{K}}:=\mathcal{K} \cup\{\top\}$, so as to obtain a meaning also for $x / \inf X$, for any $x \in X$, and study functions with values in $\overline{\mathcal{K}}$. In fact we consider two different extensions of the product \otimes from \mathcal{K} to $\overline{\mathcal{K}}$, denoted by \otimes and $\dot{\otimes}$ respectively, and use them to give characterizations of topical (i.e. increasing homogeneous, defined with the aid of \otimes) and anti-topical (i.e. decreasing anti-homogeneous, defined with the aid of $\dot{\otimes}$) functions in terms of some inequalities. Next we introduce and study for functions $f: X \rightarrow \overline{\mathcal{K}}$ their conjugates and biconjugates of Fenchel-Moreau type with respect to the coupling functions $\varphi(x, y)=x / y, \forall x, y \in X$, and $\psi(x,(y, d)):=\inf \{x / y, d\}, \forall x, y \in X, \forall d \in \overline{\mathcal{K}}$, and use them to obtain characterizations of topical and anti-topical functions. In the subsequent sections we consider for the coupling functions φ and ψ some concepts that have been studied in Rubinov and Singer (2001) [11] and Singer (2004) [15] for the so-called "additive min-type coupling functions" $\pi_{\mu}: R_{\max }^{n} \times R_{\max }^{n} \rightarrow R_{\max }$ and $\pi_{\mu}: A^{n} \times A^{n} \rightarrow A$ respectively, where A is a conditionally complete lattice ordered group and $\pi_{\mu}(x, y):=\inf _{1 \leqslant i \leqslant n}\left(x_{i}+y_{i}\right), \forall x, y \in R_{\max }^{n}\left(\right.$ or $\left.A^{n}\right)$. Thus, we

[^0]study the polars of a set $G \subseteq X$ for the coupling functions φ and ψ, and we consider for a function $f: X \rightarrow \overline{\mathcal{K}}$ the notion of support set of f with respect to the set $\widetilde{\mathcal{T}}$ of all "elementary topical functions" $\widetilde{t}_{y}(x):=x / y, \forall x \in X, \forall y \in X \backslash\{\inf X\}$ and two concepts of support set of f at a point $x_{0} \in X$. The main differences between the properties of the conjugations with respect to the coupling functions φ, ψ and π_{μ} and between the properties of the polars of a set G with respect to the coupling functions φ, ψ and π_{μ} are caused by the fact that while π_{μ} is symmetric, with values only in $R_{\max }($ resp. $A), \varphi$ and ψ are not symmetric and take values also outside $R_{\max }$ (resp. A).
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In the previous papers [16] and [17], attempting to contribute to the construction of a theory of functional analysis and convex analysis in semimodules over semifields, we have studied topical functions $f: X \rightarrow \mathcal{K}$ and related classes of functions, where X is a b-complete idempotent semimodule over a b-complete idempotent semifield \mathcal{K}. We recall that $f: X \rightarrow \mathcal{K}$ is called topical if it is increasing (i.e., the relations $x^{\prime}, x^{\prime \prime} \in X, x^{\prime} \leqslant x^{\prime \prime}$ imply $f\left(x^{\prime}\right) \leqslant f\left(x^{\prime \prime}\right)$, where \leqslant denotes the canonical order on \mathcal{K}, respectively on X, defined by $\lambda \leqslant \mu \Leftrightarrow \lambda \oplus \mu=\mu, \forall \lambda \in \mathcal{K}, \forall \mu \in \mathcal{K}$, respectively by $x \leqslant y \Leftrightarrow x \oplus y=y$, $\forall x \in X, \forall y \in X$), and homogeneous (i.e., $f(\lambda x)=\lambda f(x)$ for all $x \in X, \lambda \in \mathcal{K}$, where $\lambda x:=\lambda \otimes x, \lambda f(x)=\lambda \otimes f(x)$; the fact that we use the same notations for addition \oplus both in \mathcal{K} and in X and for multiplication \otimes both in \mathcal{K} and in $\mathcal{K} \times X$ will lead to no confusion). These definitions will be used also when \mathcal{K} is replaced by $R=((-\infty,+\infty), \oplus=\max$, $\otimes=+$) although it is not a semiring, and X is replaced by R^{n}. Let us also recall that an idempotent semiring \mathcal{K}, that is, a semiring with idempotent addition \oplus (i.e. such that $\lambda \oplus \lambda=\lambda$ for all $\lambda \in \mathcal{K}$) or an idempotent semimodule X (over an idempotent semiring \mathcal{K}) is called b-complete, if it is closed under the sum \oplus of any subset (order-) bounded from above and the multiplication \otimes distributes over such sums.

As in [16] and [17], we shall make the following basic assumptions:
($\mathrm{A} 0^{\prime}$) $\mathcal{K}=(\mathcal{K}, \oplus, \otimes)$ is a b-complete idempotent semifield (i.e., a b-complete idempotent semiring in which every $\mu \in \mathcal{K} \backslash\{\varepsilon\}$ is invertible for the multiplication \otimes, where ε denotes the neutral element of (\mathcal{K}, \oplus)), and the supremum of each (order-) bounded from above subset of \mathcal{K} belongs to \mathcal{K}; also, X is a b-complete idempotent semimodule over \mathcal{K}. In the sequel we shall omit the word "idempotent"; this will lead to no confusion.
(A1) For all elements $x \in X$ and $y \in X \backslash\{\inf X\}$ the set $\{\lambda \in \mathcal{K} \mid \lambda y \leqslant x\}$ is (order-) bounded from above, where \leqslant denotes the canonical order on \mathcal{K}, respectively on X.

Remark 1. a) It is easy to see that an idempotent semifield \mathcal{K} has no greatest element $\sup \mathcal{K}$, unless $\mathcal{K}=\{\varepsilon\}$ or $\mathcal{K}=\{\varepsilon, e\}$, where ε and e denote the neutral elements of (\mathcal{K}, \oplus)

https://daneshyari.com/en/article/4599643

Download Persian Version:
https://daneshyari.com/article/4599643

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: ivan.singer@imar.ro (I. Singer), vnitica@wcupa.edu (V. Nitica).

