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It is well-known that the halved graphs of a bipartite distance-
regular graph are distance-regular. Examples are given to
show that the converse does not hold. Thus, a natural question
is to find out when the converse is true. In this paper we
give a quasi-spectral characterization of a connected bipartite
weighted 2-punctually distance-regular graph whose halved
graphs are distance-regular. In the case the spectral diameter
is even we show that the graph characterized above is distance-
regular.
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1. Introduction

The study of characterizing the graphs whose eigenvalues and/or multiplicities sat-
isfy a prescribed identity has a long history. For example, a well-known and real-world
applicable theory asserts that a connected graph is bipartite if and only if its largest eigen-
value and smallest eigenvalue have the same absolute value. Recently, the eigenvectors,
especially the one associated with the largest eigenvalue, are also taking into consider-
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ation, for instances, in mathematical theory: [18,19,15,16,13,22]; in applications: [7,4].
See [6, pp. 65–69] for more applications. In this paper, we will give a (quasi-spectral)
characterization of graphs when an identity involving eigenvalues, multiplicities, the
eigenvector corresponding to the largest eigenvalue, and partial graph structure is satis-
fied. The details are as follows.

Throughout this paper, let G be a connected graph with vertex set V , order n = |V |,
diameter D, and distance function ∂. The adjacency matrix A of G is the binary matrix
indexed by V , where the entry (A)uv = 1 if ∂(u, v) = 1, and (A)uv = 0 otherwise. Assume
that A has d+1 distinct eigenvalues λ0 > λ1 > · · · > λd with corresponding multiplicities
m0 = 1, m1, . . . , md. The spectrum of G is denoted by spG = {λm0

0 , λm1
1 , . . . , λmd

d }, and
the parameter d is called the spectral diameter of G. Note that D � d [3]. As is known,
there is a sequence of orthogonal polynomials p0, p1, . . . , pd with respect to the inner
product 〈 , 〉G (formally defined in the beginning of the next section), where deg pi = i

and 〈pi, pi〉G = pi(λ0) for 0 � i � d [15]. Let α be the eigenvector of A associated
with λ0 such that αtα = n and all entries of α are positive. Note that α is usually
called the Perron vector, and α = (1, 1, . . . , 1)t if and only if G is regular. For u ∈ V ,
let αu be the entry corresponding to u in the eigenvector α. For 0 � i � d, define the
weighted distance-i matrix Ãi of G to be the matrix indexed by V such that the entry
(Ãi)uv = αuαv if ∂(u, v) = i, and (Ãi)uv = 0 otherwise. In particular, for the case G

is regular, Ãi is binary and is the so-called distance-i matrix Ai of G. For an integer
h � d, we say that G is weighted h-punctually distance-regular if Ãh = ph(A). Define
δ̃i =

∑
u,v(Ãi◦Ãi)uv/n, where “◦” is the entrywise product of matrices. A bipartite graph

with bipartition (X,Y ) is called (k1, k2)-biregular if every vertex in X has degree k1 and
every vertex in Y has degree k2. The distance-i graph of G is the graph whose adjacency
matrix is the distance-i matrix of G. For a connected bipartite graph G with bipartition
(X,Y ), the halved graphs GX and GY are the two connected components of the distance-2
graph of G. It is well-known that the halved graphs of a bipartite distance-regular graph
are distance-regular [5, Proposition 4.2.2]. Examples 5.1–5.3 show that the converse does
not hold, that is, a connected bipartite graph whose halved graphs are distance-regular
may not be distance-regular. Thus, a natural question is to find out when the converse
is true. Our main result is the following.

Theorem 1.1. Let G be a connected bipartite graph with bipartition (X,Y ). Suppose that
G is weighted 2-punctually distance-regular with even spectral diameter, and both halved
graphs GX and GY are distance-regular. Then G is distance-regular.

In addition to the main result, we believe that Proposition 3.3, Theorem 3.4, Propo-
sition 4.5 and Theorem 5.6 are of independent interest.

This paper is organized as follows. In the next section we provide some simple but
useful lemmas for bipartite graphs. In Section 3, we present some results related to
the spectral excess theorem [15], and characterize the graphs with δ̃i = pi(λ0) for
i ∈ {0, 1} (Lemma 3.7). In particular, this lemma is very useful for checking the reg-
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