Spectral moments of regular graphs in terms of subgraph counts

Marsha Minchenko*, Ian M. Wanless
School of Mathematical Sciences, Monash University, VIC, 3800, Australia

A R T I C L E I N F O

Article history:

Received 14 August 2013
Accepted 19 December 2013
Available online 30 January 2014
Submitted by B.L. Shader

MSC:

05C50
15A18

Keywords:

Spectral moment
Regular graph
Adjacency matrix
Eigenvalue
Totally-reducible walk
Tree-like walk

A B S T R A C T

We give equations that relate the spectral moments of a regular graph G to the numbers of certain subgraphs that occur within G. The equations are derived by using generating functions to count certain closed walks in G. The subgraphs that determine the i-th spectral moment are precisely the connected graphs of minimum degree 2 that are induced by at least one closed walk of length i.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Our aim is to provide equations that give the spectral moments of a regular graph as a linear combination of the number of copies of certain small subgraphs of the graph.

All graphs in this paper are simple and undirected. Throughout, G will be an $(r+1)$-regular graph on n vertices. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ denote the eigenvalues of the

[^0]

Fig. 1. Contributor notation.
adjacency matrix of G. The sum, $w_{\ell}=\sum_{j=1}^{n} \lambda_{j}^{\ell}$, of the ℓ-th powers of the eigenvalues is known as the ℓ-th spectral moment and is equal to the number of closed walks of length ℓ in G (see, for example, [5]). It is folklore that $w_{1}=0, w_{2}$ is two times the number of edges of G, and w_{3} is six times the number of triangles in G. By using generating functions to count a certain type of closed walk, we extend this list of equations to beyond what appears in the current literature.

Let C_{i} denote the i-cycle. For any graph H, let $[H]$ denote the number of subgraphs in G that are isomorphic to H. For 4-regular bipartite G, equations for w_{ℓ} up to $\ell=6$ were given by Cvetković et al. [1]:

$$
\begin{array}{ll}
w_{0}=n, & w_{4}=28 n+8\left[C_{4}\right] \\
w_{2}=4 n, & w_{6}=232 n+144\left[C_{4}\right]+12\left[C_{6}\right] \tag{1}
\end{array}
$$

Stevanović et al. [10] added an inequality for $\ell=8$:

$$
\begin{equation*}
w_{8} \geqslant 2092 n+2024\left[C_{4}\right]+288\left[C_{6}\right] . \tag{2}
\end{equation*}
$$

We give a general method for finding equations such as (1) for spectral moments of regular graphs, whether or not they are bipartite. The subgraphs that appear in our equations will be called contributors (in (1) all of the contributors are cycles, but this is not true in general). Our methods build on those of Friedland et al. [3] and Wanless [11] who relate the numbers of matchings to the counts of contributors. We also use a special class of closed walks similar to the "primitive circuits" used by McKay [8] to count spanning trees. Using this restricted class of closed walks we will derive generating functions that give expressions for all closed walks in terms of the counts of contributors.

Our notation for contributors is as follows. We let $C_{i_{1} \cdot i_{2} \cdots i_{h}}$ denote cycles of length $i_{1}, i_{2}, \ldots, i_{h}$ sharing a single vertex, $C_{i_{1}-i_{2}}$ an i_{1}-cycle joined to an i_{2}-cycle by an edge, $\Theta_{i_{1}, i_{2}, \ldots, i_{h}}$ two vertices joined by internally disjoint paths of lengths $i_{1}, i_{2}, \ldots, i_{h}$, and K_{i} the complete graph on i vertices. Examples of this notation appear in Fig. 1. If at any point we encounter contributors that cannot be described by our notation, we draw a picture of the subgraph like those in Fig. 1.

Formally, we define a contributor to be a connected graph with minimum degree at least 2 . As we will show in Theorem 9, a contributor affects w_{i} if and only if its edges can be covered by a closed walk of length i. Any given w_{i} is only affected by finitely many contributors because a contributor with j edges can only affect w_{i} if $j \leqslant i$. We note that although our contributors are the same as in [11], they are used differently because we are counting slightly different types of walks.

https://daneshyari.com/en/article/4599651

Download Persian Version:

https://daneshyari.com/article/4599651

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: marsha.minchenko@monash.edu (M. Minchenko), ian.wanless@monash.edu (I.M. Wanless).

