Eigenvalue majorization inequalities for positive semidefinite block matrices and their blocks

Yun Zhang ${ }^{\text {a,b,*, }}$
${ }^{\text {a }}$ School of Mathematical Sciences, Huaibei Normal University, Huaibei 235000, China
${ }^{\text {b }}$ Department of Mathematics, East China Normal University, Shanghai 200241, China

A R T I C L E I N F O

Article history:

Received 26 August 2013
Accepted 14 December 2013
Available online 8 January 2014
Submitted by P. Semrl

$M S C$:

15A15
15A42
15A48
15B57

Keywords:
Positive semidefinite block matrices Hermitian matrix
Eigenvalues
Majorization

A B S T R A C T

Let $H=\left(\begin{array}{cc}M & K \\ K^{*} & N\end{array}\right)$ be a positive semidefinite block matrix with square matrices M and N of the same order and denote $i=\sqrt{-1}$. The main results are the following eigenvalue majorization inequalities: for any complex number z of modulus 1 ,

$$
\begin{aligned}
\lambda(H) \prec & \frac{1}{2} \lambda\left(\left[M+N+i\left(z K^{*}-\bar{z} K\right)\right] \oplus O\right) \\
& +\frac{1}{2} \lambda\left(\left[M+N+i\left(\bar{z} K-z K^{*}\right)\right] \oplus O\right)
\end{aligned}
$$

If, in addition, K is Hermitian, then for any real number $r \in$ $[-2,2]$,
$\lambda(H) \prec \frac{1}{2} \lambda((M+N+r K) \oplus O)+\frac{1}{2} \lambda((M+N-r K) \oplus O)$,
while if K is skew-Hermitian, then for any real number $r \in$ $[-2,2]$,

$$
\lambda(H) \prec \frac{1}{2} \lambda((M+N+r i K) \oplus O)+\frac{1}{2} \lambda((M+N-r i K) \oplus O),
$$

[^0]where O is the zero matrix of compatible size. These majorization inequalities generalize some results due to Furuichi and Lin, Turkmen, Paksoy and Zhang, Lin and Wolkowicz.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

First, we recall the definition of majorization. Given a real vector $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in$ \mathbb{R}^{n}, we rearrange its components as $x_{[1]} \geqslant x_{[2]} \geqslant \cdots \geqslant x_{[n]}$. For $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$, if

$$
\sum_{i=1}^{k} x_{[i]} \leqslant \sum_{i=1}^{k} y_{[i]}, \quad k=1,2, \ldots, n
$$

then we say that x is weakly majorized by y and denote $x \prec_{w} y$. If $x \prec_{w} y$ and $\sum_{i=1}^{n} x_{i}=$ $\sum_{i=1}^{n} y_{i}$ holds, then we say that x is majorized by y and denote $x \prec y$. Denote by $M_{m, n}$ the set of the $m \times n$ complex matrices. $M_{n, n}$ will be abbreviated as $M_{n} . H_{n}$ stands for the set of all Hermitian matrices of order n. Let $A \in M_{n}$. We always denote the singular values of $A \in M_{n}$ by $s_{1}(A) \geqslant \cdots \geqslant s_{n}(A)$, and we denote $s(A):=\left(s_{1}(A), \ldots, s_{n}(A)\right)$. Let $A \in H_{n}$, we always denote the eigenvalues of A in decreasing order by $\lambda_{1}(A) \geqslant \cdots \geqslant$ $\lambda_{n}(A)$ and denote $\lambda(A):=\left(\lambda_{1}(A), \ldots, \lambda_{n}(A)\right)$. A classical result concerning eigenvalue majorization is the fundamental result due to Schur [1,5,7,10] which states that the diagonal entries of a Hermitian matrix are majorized by its eigenvalues, i.e.,

$$
\begin{equation*}
\operatorname{diag}(A) \prec \lambda(A) \tag{1}
\end{equation*}
$$

Ky Fan in [2] extended this result to block Hermitian matrices. Let $H=\left(\begin{array}{cc}M & K \\ K^{*} & N\end{array}\right)$ be a partitioned Hermitian matrix, where M and N are square matrices of the same order. Then

$$
\begin{equation*}
\lambda(M \oplus N) \prec \lambda(H) . \tag{2}
\end{equation*}
$$

A related result of Rotfel'd and Thompson [7] states that for positive semidefinite matrices M and N,

$$
\begin{equation*}
\lambda(M \oplus N) \prec \lambda((M+N) \oplus O) \tag{3}
\end{equation*}
$$

In a recent article [6], Lin and Wolkowicz prove that under the conditions that H be positive semidefinite and that K be Hermitian, the eigenvalues of H are majorized by those of $M+N$, i.e.,

$$
\begin{equation*}
\lambda(H) \prec \lambda((M+N) \oplus O) . \tag{4}
\end{equation*}
$$

https://daneshyari.com/en/article/4599655

Download Persian Version:
https://daneshyari.com/article/4599655

Daneshyari.com

[^0]: * Correspondence to: School of Mathematical Sciences, Huaibei Normal University, Huaibei 235000, China.

 E-mail address: zhangyunmaths@163.com.
 ${ }^{1}$ The work was supported by the NSFC grant 11371145 and the Science Foundation for the Excellent Youth Scholars of Anhui Education Ministry (No. 2011SQRL070).

