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with square matrices M and N of the same order and denote
i = y/—1. The main results are the following eigenvalue
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while if K is skew-Hermitian, then for any real number r €
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where O is the zero matrix of compatible size. These
majorization inequalities generalize some results due to
Furuichi and Lin, Turkmen, Paksoy and Zhang, Lin and

Wolkowicz.
© 2013 Elsevier Inc. All rights reserved.
1. Introduction
First, we recall the definition of majorization. Given a real vector x = (1, Z2,...,Z,) €
R™, we rearrange its components as () = Tjg = -+ = T[y. For x = (1,22, ..., Tn),
Yy = (ylayQa"'ayn) S Rn, if
k k
Zm[i]gzy[zb k:1727"'an7
i=1 i=1

then we say that x is weakly majorized by y and denote z <, y. If z <, y and > | x; =
>, y; holds, then we say that x is majorized by y and denote z < y. Denote by M,, ,,
the set of the m X n complex matrices. M, ,, will be abbreviated as M,,. H,, stands for
the set of all Hermitian matrices of order n. Let A € M,,. We always denote the singular
values of A € M,, by s1(A) = --- > s,(A4), and we denote s(A) := (s1(A),...,sn(4)).
Let A € H,,, we always denote the eigenvalues of A in decreasing order by A;(4) > --- >
An(A) and denote A\(A) := (A (A),..., A\ (A4)). A classical result concerning eigenvalue
majorization is the fundamental result due to Schur [1,5,7,10] which states that the
diagonal entries of a Hermitian matrix are majorized by its eigenvalues, i.e.,

diag(A) < A(4). (1)

Ky Fan in [2] extended this result to block Hermitian matrices. Let H = ( ]Jy ﬁ) be

a partitioned Hermitian matrix, where M and N are square matrices of the same order.
Then
MM @& N) < \(H). (2)

A related result of Rotfel’d and Thompson [7] states that for positive semidefinite
matrices M and N,

MM @ N)<A(M+N)®O0,). (3)

In a recent article [6], Lin and Wolkowicz prove that under the conditions that H be
positive semidefinite and that K be Hermitian, the eigenvalues of H are majorized by
those of M + N, i.e.,

MH) < AM(M+N)®O0). (4)
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