

The inverse, rank and product of tensors

Changjiang Bu^a, Xu Zhang^a, Jiang Zhou^{a,b}, Wenzhe Wang^a, Yimin Wei^c

 ^a College of Science, Harbin Engineering University, Harbin 150001, PR China
^b College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, PR China

^c School of Mathematical Sciences and Shanghai Key Laboratory of Contemporary Applied Mathematics, Fudan University, Shanghai 200433, PR China

ARTICLE INFO

Article history: Received 25 September 2013 Accepted 9 December 2013 Available online 7 January 2014 Submitted by R. Brualdi

MSC: 15A69 15A09 15A03

Keywords: Tensor Left (right) inverse Tensor rank Product Hypergraph

ABSTRACT

In this paper, we give some basic properties for the left (right) inverse, rank and product of tensors. The existence of order 2 left (right) inverses of tensors is characterized. We obtain some equalities and inequalities on the tensor rank. We also show that the rank of a uniform hypergraph is independent of the ordering of its vertices, and the Laplacian tensor and the signless Laplacian tensor have the same rank for odd-bipartite even uniform hypergraphs.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

For a positive integer n, let $[n] = \{1, \ldots, n\}$. An order k tensor $\mathcal{A} = (a_{i_1 \cdots i_k}) \in \mathbb{C}^{n_1 \times \cdots \times n_k}$ is a multidimensional array with $n_1 \cdots n_k$ entries, where $i_j \in [n_j], j = 1, \ldots, k$.

E-mail address: buchangjiang@hrbeu.edu.cn (C. Bu).

^{0024-3795/\$ –} see front matter @ 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.laa.2013.12.015

We sometimes write $a_{i_1\cdots i_k}$ as $a_{i_1\alpha}$, where $\alpha = i_2\cdots i_k$. When k = 2, \mathcal{A} is an $n_1 \times n_2$ matrix. If $n_1 = \cdots = n_k = n$, then \mathcal{A} is an order k dimension n tensor. Recently the research on tensors has attracted extensive attention [1,2,4–6,10–13].

Now we introduce the following product of tensors.

Definition 1.1. Let $\mathcal{A} \in \mathbb{C}^{n_1 \times n_2 \times \cdots \times n_2}$ and $\mathcal{B} \in \mathbb{C}^{n_2 \times \cdots \times n_{k+1}}$ be order $m \ge 2$ and $k \ge 1$ tensors, respectively. The product \mathcal{AB} is the following tensor \mathcal{C} of order (m-1)(k-1)+1 with entries:

$$c_{i\alpha_1\ldots\alpha_{m-1}} = \sum_{i_2,\ldots,i_m \in [n_2]} a_{ii_2\ldots i_m} b_{i_2\alpha_1}\cdots b_{i_m\alpha_{m-1}},$$

where $i \in [n_1], \alpha_1, \ldots, \alpha_{m-1} \in [n_3] \times \cdots \times [n_{k+1}].$

In the above definition, if $n_1 = n_2 = \cdots = n_{k+1} = n$, then \mathcal{AB} is the tensor product introduced in [4,11]. The tensor product defined in Definition 1.1 has the following properties:

- (1) $(\mathcal{A}_1 + \mathcal{A}_2)\mathcal{B} = \mathcal{A}_1\mathcal{B} + \mathcal{A}_2\mathcal{B}$, where $\mathcal{A}_1, \mathcal{A}_2 \in \mathbb{C}^{n_1 \times n_2 \times \cdots \times n_2}, \mathcal{B} \in \mathbb{C}^{n_2 \times \cdots \times n_{k+1}}$.
- (2) $A(\mathcal{B}_1 + \mathcal{B}_2) = A\mathcal{B}_1 + A\mathcal{B}_2$, where $A \in \mathbb{C}^{n_1 \times n_2}, \mathcal{B}_1, \mathcal{B}_2 \in \mathbb{C}^{n_2 \times \cdots \times n_{k+1}}$.
- (3) $\mathcal{A}I_{n_2} = \mathcal{A}, I_{n_2}\mathcal{B} = \mathcal{B}$, where $\mathcal{A} \in \mathbb{C}^{n_1 \times n_2 \times \cdots \times n_2}, \mathcal{B} \in \mathbb{C}^{n_2 \times \cdots \times n_{k+1}}, I_{n_2}$ is the identity matrix of order n_2 .

(4) $\mathcal{A}(\mathcal{BC}) = (\mathcal{AB})\mathcal{C}$, where $\mathcal{A} \in \mathbb{C}^{n_1 \times n_2 \times \cdots \times n_2}$, $\mathcal{B} \in \mathbb{C}^{n_2 \times n_3 \times \cdots \times n_3}$, $\mathcal{C} \in \mathbb{C}^{n_3 \times \cdots \times n_r}$.

Clearly parts (1)-(3) follow from Definition 1.1. Part (4) will be proved at the beginning of Section 2.

The unit tensor of order m and dimension n is the tensor $\mathcal{I} = (\delta_{i_1 i_2 \cdots i_m})$ such that $\delta_{i_1 i_2 \cdots i_m} = 1$ if $i_1 = i_2 = \cdots = i_m$, and $\delta_{i_1 i_2 \cdots i_m} = 0$ otherwise.

Definition 1.2. Let \mathcal{A} be a tensor of order m and dimension n, and let \mathcal{B} be a tensor of order k and dimension n. If $\mathcal{AB} = \mathcal{I}$, then \mathcal{A} is called an order m left inverse of \mathcal{B} , and \mathcal{B} is called an order k right inverse of \mathcal{A} .

The Segre outer product of $a_1 \in \mathbb{C}^{n_1}, \ldots, a_k \in \mathbb{C}^{n_k}$, denoted by $a_1 \otimes \cdots \otimes a_k$, is the tensor $\mathcal{A} \in \mathbb{C}^{n_1 \times \cdots \times n_k}$ with entries $a_{i_1 \cdots i_k} = (a_1)_{i_1} \cdots (a_k)_{i_k}$. A tensor $\mathcal{A} \in \mathbb{C}^{n_1 \times \cdots \times n_k}$ is said to have rank one if there exist nonzero $a_i \in \mathbb{C}^{n_i}$ $(i = 1, \ldots, k)$ such that $\mathcal{A} = a_1 \otimes \cdots \otimes a_k$. The rank of a tensor \mathcal{A} , denoted by rank (\mathcal{A}) , is defined to be the smallest r such that \mathcal{A} can be written as a sum of r rank one tensors. If $\mathcal{A} = 0$, then rank $(\mathcal{A}) = 0$ (see [8]).

In this paper, some basic properties for order 2 left (right) inverse and product of tensors are given. We also obtain some results on rank of tensors and hypergraphs.

Download English Version:

https://daneshyari.com/en/article/4599659

Download Persian Version:

https://daneshyari.com/article/4599659

Daneshyari.com