The inverse, rank and product of tensors

Changjiang Bu^{a}, Xu Zhang ${ }^{\mathrm{a}}$, Jiang Zhou ${ }^{\mathrm{a}, \mathrm{b}}$, Wenzhe Wang ${ }^{\mathrm{a}}$, Yimin Wei ${ }^{\text {c }}$
${ }^{\text {a }}$ College of Science, Harbin Engineering University, Harbin 150001, PR China
b College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, PR China
c School of Mathematical Sciences and Shanghai Key Laboratory of Contemporary Applied Mathematics, Fudan University, Shanghai 200433, PR China

A R T I C L E I N F O

Article history:

Received 25 September 2013
Accepted 9 December 2013
Available online 7 January 2014
Submitted by R. Brualdi

MSC:

15A69
15A09
15A03

Abstract

In this paper, we give some basic properties for the left (right) inverse, rank and product of tensors. The existence of order 2 left (right) inverses of tensors is characterized. We obtain some equalities and inequalities on the tensor rank. We also show that the rank of a uniform hypergraph is independent of the ordering of its vertices, and the Laplacian tensor and the signless Laplacian tensor have the same rank for odd-bipartite even uniform hypergraphs.

© 2013 Elsevier Inc. All rights reserved.

Keywords:
Tensor
Left (right) inverse
Tensor rank
Product
Hypergraph

1. Introduction

For a positive integer n, let $[n]=\{1, \ldots, n\}$. An order k tensor $\mathcal{A}=\left(a_{i_{1} \cdots i_{k}}\right) \in$ $\mathbb{C}^{n_{1} \times \cdots \times n_{k}}$ is a multidimensional array with $n_{1} \cdots n_{k}$ entries, where $i_{j} \in\left[n_{j}\right], j=1, \ldots, k$.

[^0]We sometimes write $a_{i_{1} \cdots i_{k}}$ as $a_{i_{1} \alpha}$, where $\alpha=i_{2} \cdots i_{k}$. When $k=2, \mathcal{A}$ is an $n_{1} \times n_{2}$ matrix. If $n_{1}=\cdots=n_{k}=n$, then \mathcal{A} is an order k dimension n tensor. Recently the research on tensors has attracted extensive attention [1,2,4-6,10-13].

Now we introduce the following product of tensors.

Definition 1.1. Let $\mathcal{A} \in \mathbb{C}^{n_{1} \times n_{2} \times \cdots \times n_{2}}$ and $\mathcal{B} \in \mathbb{C}^{n_{2} \times \cdots \times n_{k+1}}$ be order $m \geqslant 2$ and $k \geqslant 1$ tensors, respectively. The product $\mathcal{A B}$ is the following tensor \mathcal{C} of order $(m-1)(k-1)+1$ with entries:

$$
c_{i \alpha_{1} \ldots \alpha_{m-1}}=\sum_{i_{2}, \ldots, i_{m} \in\left[n_{2}\right]} a_{i i_{2} \ldots i_{m}} b_{i_{2} \alpha_{1}} \cdots b_{i_{m} \alpha_{m-1}}
$$

where $i \in\left[n_{1}\right], \alpha_{1}, \ldots, \alpha_{m-1} \in\left[n_{3}\right] \times \cdots \times\left[n_{k+1}\right]$.

In the above definition, if $n_{1}=n_{2}=\cdots=n_{k+1}=n$, then $\mathcal{A B}$ is the tensor product introduced in $[4,11]$. The tensor product defined in Definition 1.1 has the following properties:
(1) $\left(\mathcal{A}_{1}+\mathcal{A}_{2}\right) \mathcal{B}=\mathcal{A}_{1} \mathcal{B}+\mathcal{A}_{2} \mathcal{B}$, where $\mathcal{A}_{1}, \mathcal{A}_{2} \in \mathbb{C}^{n_{1} \times n_{2} \times \cdots \times n_{2}}, \mathcal{B} \in \mathbb{C}^{n_{2} \times \cdots \times n_{k+1}}$.
(2) $A\left(\mathcal{B}_{1}+\mathcal{B}_{2}\right)=A \mathcal{B}_{1}+A \mathcal{B}_{2}$, where $A \in \mathbb{C}^{n_{1} \times n_{2}}, \mathcal{B}_{1}, \mathcal{B}_{2} \in \mathbb{C}^{n_{2} \times \cdots \times n_{k+1}}$.
(3) $\mathcal{A} I_{n_{2}}=\mathcal{A}, I_{n_{2}} \mathcal{B}=\mathcal{B}$, where $\mathcal{A} \in \mathbb{C}^{n_{1} \times n_{2} \times \cdots \times n_{2}}, \mathcal{B} \in \mathbb{C}^{n_{2} \times \cdots \times n_{k+1}}, I_{n_{2}}$ is the identity matrix of order n_{2}.
(4) $\mathcal{A}(\mathcal{B C})=(\mathcal{A B}) \mathcal{C}$, where $\mathcal{A} \in \mathbb{C}^{n_{1} \times n_{2} \times \cdots \times n_{2}}, \mathcal{B} \in \mathbb{C}^{n_{2} \times n_{3} \times \cdots \times n_{3}}, \mathcal{C} \in \mathbb{C}^{n_{3} \times \cdots \times n_{r}}$.

Clearly parts (1)-(3) follow from Definition 1.1. Part (4) will be proved at the beginning of Section 2.

The unit tensor of order m and dimension n is the tensor $\mathcal{I}=\left(\delta_{i_{1} i_{2} \cdots i_{m}}\right)$ such that $\delta_{i_{1} i_{2} \cdots i_{m}}=1$ if $i_{1}=i_{2}=\cdots=i_{m}$, and $\delta_{i_{1} i_{2} \cdots i_{m}}=0$ otherwise.

Definition 1.2. Let \mathcal{A} be a tensor of order m and dimension n, and let \mathcal{B} be a tensor of order k and dimension n. If $\mathcal{A B}=\mathcal{I}$, then \mathcal{A} is called an order m left inverse of \mathcal{B}, and \mathcal{B} is called an order k right inverse of \mathcal{A}.

The Segre outer product of $a_{1} \in \mathbb{C}^{n_{1}}, \ldots, a_{k} \in \mathbb{C}^{n_{k}}$, denoted by $a_{1} \otimes \cdots \otimes a_{k}$, is the tensor $\mathcal{A} \in \mathbb{C}^{n_{1} \times \cdots \times n_{k}}$ with entries $a_{i_{1} \cdots i_{k}}=\left(a_{1}\right)_{i_{1}} \cdots\left(a_{k}\right)_{i_{k}}$. A tensor $\mathcal{A} \in \mathbb{C}^{n_{1} \times \cdots \times n_{k}}$ is said to have rank one if there exist nonzero $a_{i} \in \mathbb{C}^{n_{i}}(i=1, \ldots, k)$ such that $\mathcal{A}=$ $a_{1} \otimes \cdots \otimes a_{k}$. The rank of a tensor \mathcal{A}, denoted by $\operatorname{rank}(\mathcal{A})$, is defined to be the smallest r such that \mathcal{A} can be written as a sum of $r \operatorname{rank}$ one tensors. If $\mathcal{A}=0, \operatorname{then} \operatorname{rank}(\mathcal{A})=0$ (see [8]).

In this paper, some basic properties for order 2 left (right) inverse and product of tensors are given. We also obtain some results on rank of tensors and hypergraphs.

https://daneshyari.com/en/article/4599659

Download Persian Version:
https://daneshyari.com/article/4599659

Daneshyari.com

[^0]: E-mail address: buchangjiang@hrbeu.edu.cn (C. Bu).
 0024-3795/\$ - see front matter © 2013 Elsevier Inc. All rights reserved.
 http://dx.doi.org/10.1016/j.laa.2013.12.015

