

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

A decreasing sequence of upper bounds for the Laplacian energy of a tree

Juan Carmona ^a, Ivan Gutman ^{b,*}, Nelda Jaque Tamblay ^a, María Robbiano ^a

ARTICLE INFO

Article history: Received 25 October 2013 Accepted 11 January 2014 Available online 28 January 2014 Submitted by R. Brualdi

MSC: 05C50 15A18

Keywords:
Graph spectrum
Laplacian spectrum (of a graph)
Laplacian energy
Energy (of a matrix)

ABSTRACT

Let R be a nonnegative Hermitian matrix. The energy of R, denoted by E(R), is the sum of absolute values of its eigenvalues. We construct an increasing sequence that converges to the Perron root of R. This sequence yields a decreasing sequence of upper bounds for E(R). We then apply this result to the Laplacian energy of trees of order n, namely to the sum of the absolute values of the eigenvalues of the Laplacian matrix, shifted by -2(n-1)/n.

© 2014 Elsevier Inc. All rights reserved.

1. Notation and preliminaries

In this paper we consider undirected simple graphs. The edge set of such a graph G is denoted by $\mathcal{E}(G)$ and its vertex set by $\mathcal{V}(G)$. By an (n, m)-graph G we mean a graph

^a Departamento de Matemáticas, Universidad Católica del Norte, Av. Angamos, 0610 Antofagasta, Chile

^b Faculty of Science, University of Kragujevac, P.O.B. 60, 34000 Kragujevac, Serbia

^{*} Corresponding author. Fax: +381 34 335040.

E-mail addresses: jcarmona01@ucn.cl (J. Carmona), gutman@kg.ac.rs (I. Gutman), njaque@ucn.cl (N.J. Tamblay), mrobbiano@ucn.cl (M. Robbiano).

with n vertices and m edges. The cardinality of $\mathcal{V}(G)$ i.e., n is the order of G. If G has order n, then its vertices are assumed to be labeled by $1, 2, \ldots, n$.

If $e \in \mathcal{E}(G)$ has end vertices i and j, then we say that i and j are adjacent and this edge is denoted by ij. If $i \in \mathcal{V}(G)$, then $N_G(i)$ is the set of neighbors of the vertex i in G, that is, $N_G(i) = \{j \in \mathcal{V}(G): ij \in \mathcal{E}(G)\}$. For the i-th vertex of G, the cardinality of $N_G(i)$ is called the degree of i and it is denoted by d_i .

The adjacency matrix A(G) of the graph G is a 0–1 matrix of order n with entries a_{ij} , such that $a_{ij} = 1$ if $ij \in \mathcal{E}(G)$ and $a_{ij} = 0$ otherwise. The eigenvalues $\lambda_1 \ge \cdots \ge \lambda_n$ of A(G) are said to be the eigenvalues of G (see [4,6]). If G is connected, then A(G) is a nonnegative irreducible matrix [4].

If D(G) is the diagonal matrix of vertex degrees of G, then L(G) = D(G) - A(G) and Q(G) = D(G) + A(G) are the Laplacian and the signless Laplacian matrices of G, respectively (see [3,5,9,8,20]). It is well known that the spectra of L(G) and Q(G) coincide if and only if G is bipartite [9,8,20]. We denote by $\mu_1 \geqslant \mu_2 \geqslant \cdots \geqslant \mu_n$ and $q_1 \geqslant q_2 \geqslant \cdots \geqslant q_n$ the eigenvalues of L(G) and Q(G), respectively.

Spectral properties of graphs, including properties of the characteristic polynomial, have been extensively studied. For details, we refer to [4].

In [10], one of the present authors recognized that the quantity

$$E(G) = E = \sum_{i=1}^{n} |\lambda_i|$$

could be viewed as a graph-spectrum-based invariant with interesting and worth-to-study mathematical properties. E(G) is said to be the energy of the graph G. Details of the theory of graph energy can be found in the reviews [15,16] and the recent book [18].

In [22], Koolen and Moulton showed that the following relation holds:

$$E \leqslant \lambda_1 + \sqrt{(n-1)(2m - \lambda_1^2)}. (1)$$

Then, using the inequality $2m/n \leq \lambda_1$ they obtained the upper bound

$$E \leqslant \frac{2m}{n} + \sqrt{(n-1)\left[2m - \left(\frac{2m}{n}\right)^2\right]}.$$

The line graph $\mathcal{L}(G)$ of the graph G is the graph whose vertices correspond to the edges of G, with two vertices of $\mathcal{L}(G)$ being adjacent if and only if the corresponding edges in G have a vertex in common.

Let I(G) be the (vertex-edge) incidence matrix of the (n,m)-graph G, defined as the $n \times m$ matrix whose (i,j)-entry is 1 if the vertex i is incident to the edge e_j , and 0 otherwise. As well known (see [4,13]),

$$I(G)I(G)^{t} = A(G) + D(G) = Q(G),$$

$$I(G)^{t} I(G) = 2 I_{m} + A(\mathcal{L}(G))$$

Download English Version:

https://daneshyari.com/en/article/4599661

Download Persian Version:

https://daneshyari.com/article/4599661

<u>Daneshyari.com</u>