

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

On maximum chains in the Bruhat order of $\mathcal{A}(n,2)$

M. Ghebleh

Department of Mathematics, Faculty of Science, Kuwait University, Kuwait

ARTICLE INFO

Article history: Received 22 December 2013 Accepted 1 January 2014 Available online 21 January 2014 Submitted by R. Brualdi

MSC: 05B20 06A07 15A36

Keywords:
Binary matrices
(0, 1)-matrices
Bruhat order
Interchange
Inversion
Chain

ABSTRACT

Let $\mathcal{A}(R,S)$ denote the class of all matrices of zeros and ones with row sum vector R and column sum vector S. We introduce the notion of an inversion in a (0,1)-matrix. This definition extends the standard notion of an inversion of a permutation, in the sense that both notions agree on the class of permutation matrices. We prove that the number of inversions in a (0,1)-matrix is monotonic with respect to the secondary Bruhat order of the class $\mathcal{A}(R,S)$. We apply this result in establishing the maximum length of a chain in the Bruhat order of the class $\mathcal{A}(n,2)$ of (0,1)-matrices of order n in which every row and every column has a sum of 2. We give algorithmic constructions of chains of maximum length in the Bruhat order of $\mathcal{A}(n,2)$.

 \odot 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let $R = (r_1, ..., r_m)$ and $S = (s_1, ..., s_n)$ be two vectors with nonnegative integral entries. The class of all (0, 1)-matrices of size m by n with row sum vector R and column sum vector S is denoted by A(R, S). If m = n and R = S = (k, k, ..., k), we simply write A(n, k) for A(R, S). In particular, A(n, 1) is the class of all permutation matrices of order n, which can be identified by the symmetric group S_n . Combinatorial properties of the class A(R, S) are studied extensively (see for example [1-3, 8] and the references therein).

Given the vectors R, S and a matrix $A \in \mathcal{A}(R,S)$, one may construct a new matrix $B \in \mathcal{A}(R,S)$ from A by means of an *interchange*

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \leftrightarrow \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = L_2$$

that replaces a 2×2 submatrix of A equal to I_2 (if one exists) by L_2 , or vice versa. In the class $\mathcal{A}(n,1)$ of permutation matrices, these interchanges correspond to transpositions in permutations. A result due to Ryser [7,8] states that for any two matrices in the class $\mathcal{A}(R,S)$, one can be obtained from the other by a sequence of $I_2 \leftrightarrow L_2$ interchanges.

In [5] Brualdi and Hwang define a Bruhat order on the class $\mathcal{A}(R, S)$ generalizing the classical Bruhat order on the symmetric group \mathcal{S}_n (note that the class $\mathcal{A}(n, 1)$ consists of permutation matrices of order n, hence it can be identified by \mathcal{S}_n). Given a (0, 1)-matrix A of size m by n, let Σ_A be the m by n matrix whose (k, ℓ) -entry is

$$\sigma_{k\ell}(A) = \sum_{i=1}^k \sum_{j=1}^\ell a_{ij}.$$

If A and C are (0,1)-matrices in a class $\mathcal{A}(R,S)$, then A precedes C in the Bruhat order, written as $A \leq_B C$ for short, if $\Sigma_A \geqslant \Sigma_C$ in the entrywise order. Namely,

$$A \preceq_B C$$
 if and only if $\sigma_{ij}(A) \geqslant \sigma_{ij}(C)$ for all $1 \leqslant i \leqslant m$ and $1 \leqslant j \leqslant n$.

It is easily observed that if C is obtained from A by a sequence of $I_2 \to L_2$ interchanges, then $A \preceq_B C$. It is shown in [4] that the converse does not hold in general. This observation defines a *secondary Bruhat order* on the classes $\mathcal{A}(R,S)$ of (0,1)-matrices: $A \preceq_{\widehat{B}} C$ if and only if C is obtained from A by a sequence of $I_2 \to L_2$ interchanges. It is shown in [4] that the Bruhat order and the secondary Bruhat order are the same on the classes $\mathcal{A}(n,2)$, but they are different on $\mathcal{A}(6,3)$.

Answering a question asked in [4], Conflitti et al. [6] show that for all $k \ge 1$, the maximum length of a chain in the Bruhat order of the class $\mathcal{A}(2k,k)$ is k^4 . In this work, we establish the maximum length of a chain in the Bruhat order of the classes $\mathcal{A}(n,2)$. We define the notion of an inversion in a (0,1)-matrix and show that the number of inversions in a (0,1)-matrix is monotonic with respect to the secondary Bruhat order. This result, together with a classification of minimal elements of the Bruhat order of $\mathcal{A}(n,2)$ proved in [4], gives an upper bound on the length of a chain in the (secondary) Bruhat order of the class $\mathcal{A}(n,2)$. We give algorithmic constructions of chains that achieve this upper bound.

2. Inversions in (0, 1)-matrices

The symmetric group S_n is naturally identified with the class A(n, 1) of permutation matrices of order n. In this sense, an inversion in a permutation corresponds to a pair of

Download English Version:

https://daneshyari.com/en/article/4599667

Download Persian Version:

https://daneshyari.com/article/4599667

Daneshyari.com