The minimization of matrix logarithms: On a fundamental property of the unitary polar factor

Johannes Lankeit ${ }^{\text {a,* }}$, Patrizio Neff ${ }^{\text {b }}$, Yuji Nakatsukasa ${ }^{\text {c }}$
${ }^{\text {a }}$ Fakultät für Mathematik, Universität Duisburg-Essen, Campus Essen, Thea-Leymann Str. 9, 45127 Essen, Germany
${ }^{\text {b }}$ Lehrstuhl für Nichtlineare Analysis und Modellierung, Fakultät für Mathematik, Universität Duisburg-Essen, Campus Essen, Thea-Leymann Str. 9, 45127 Essen, Germany
c Department of Mathematical Informatics, Graduate School of Information
Science and Technology, University of Tokyo, Tokyo 113-8656, Japan

A R T I C L E I N F O

Article history:

Received 5 August 2013
Accepted 4 February 2014
Available online 26 February 2014
Submitted by N.J. Higham

MSC:

15A16
15A18
15A24
15A44
15A45
15A60
26Dxx

A B S T R A C T

We show that the unitary factor U_{p} in the polar decomposition of a nonsingular matrix $Z=U_{p} H$ is a minimizer for both

$$
\left\|\log \left(Q^{*} Z\right)\right\| \quad \text { and } \quad\left\|\operatorname{sym}_{*}\left(\log \left(Q^{*} Z\right)\right)\right\|
$$

over the unitary matrices $Q \in \mathcal{U}(n)$ for any given invertible matrix $Z \in \mathbb{C}^{n \times n}$, for any unitarily invariant norm and any n. We prove that U_{p} is the unique matrix with this property to minimize all these norms simultaneously. As important tools we use a generalized Bernstein trace inequality and the theory of majorization.
© 2014 Published by Elsevier Inc.

Keywords:

Unitary polar factor
Matrix logarithm
Matrix exponential
Hermitian part
Minimization
Unitarily invariant norm

[^0]Polar decomposition
Majorization
Optimality

1. Introduction

Just as every nonzero complex number $z=r e^{i \varphi}$ admits a unique polar representation with $r \in \mathbb{R}_{+}, \varphi \in(-\pi, \pi]$, every matrix $Z \in \mathbb{C}^{n \times n}$ can be decomposed into a product of the unitary polar factor $U_{p} \in U(n)$ (where $U(n)$ denotes the group of $n \times n$ unitary matrices) and a positive semidefinite matrix H [4, Lemma 2, p. 124], [19, Ch. 8], [20, p. 414]:

$$
Z=U_{p} H
$$

This decomposition is unique if Z is invertible. We note that the polar decomposition exists for rectangular matrices $Z \in \mathbb{C}^{m \times n}$, but in this paper we shall restrict ourselves to invertible $Z \in \mathbb{C}^{n \times n}$, in which case U_{p}, H are unique and $H=\sqrt{Z^{*} Z}$ is positive definite, where the matrix square root is taken to be the principal one [19, Ch. 6].

The unitary polar factor U_{p} plays an important role in geometrically exact descriptions of solid materials. In this case $U_{p}^{T} F=H$ is called the right stretch tensor of the deformation gradient F and serves as a basic measure of the elastic deformation [10,29,33,28,27]. For additional applications and computational issues of the polar decomposition see e.g. [16, Ch. 12] and [26,12,24,25].

The unitary polar factor also has the property that in terms of any unitarily invariant matrix norm $\|\cdot\|$, i.e. norms that satisfy $\|X\|=\|U X V\|$ for any unitary U, V, it is the nearest unitary matrix [7, Thm. IX.7.2], [15,17], [19, p. 197] to Z, that is,

$$
\begin{equation*}
\min _{Q \in \mathcal{U}(n)}\|Z-Q\|=\min _{Q \in \mathcal{U}(n)}\left\|Q^{*} Z-I\right\|=\left\|U_{p}^{*} Z-I\right\|=\left\|\sqrt{Z^{*} Z}-I\right\| . \tag{1}
\end{equation*}
$$

The presumably first proof - also motivated by elasticity theory - of the important case of dimension three and the Frobenius norm can be found in Grioli's work [17], see also [34].

The purpose of the present paper is to show that the unitary polar factor enjoys this minimization property (made precise in (10)) also with respect to the norm of the logarithm, an expression that arises when considering geodesic distances on matrix Lie groups (see [35,30,31] for further motivation):

$$
\min _{Q \in \mathcal{U}(n)}\left\|\log Q^{*} Z\right\|=\left\|\log U_{p}^{*} Z\right\|=\left\|\log \sqrt{Z^{*} Z}\right\|
$$

and with respect to the Hermitian part of the logarithm

$$
\min _{Q \in \mathcal{U}(n)}\left\|\operatorname{sym}_{*} \log Q^{*} Z\right\|=\left\|\operatorname{sym}_{*} \log U_{p}^{*} Z\right\|=\left\|\log \sqrt{Z^{*} Z}\right\| .
$$

https://daneshyari.com/en/article/4599672

Download Persian Version:

https://daneshyari.com/article/4599672

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: johannes.lankeit@uni-due.de (J. Lankeit), patrizio.neff@uni-due.de (P. Neff), nakatsukasa@mist.i.u-tokyo.ac.jp (Y. Nakatsukasa).

