Enumeration of compositions according to the sum of the values of the first letters of the occurrences of a 2-letter pattern

Walaa Asakly, Toufik Mansour*
Department of Mathematics, University of Haifa, 3498838 Haifa, Israel

A R T I C L E I N F O

Article history:

Received 18 September 2013
Accepted 14 February 2014
Available online 4 March 2014
Submitted by R. Brualdi

MSC:

05A15
15A06
15A15
Keywords:
Rises
Weak-rises
Levels
Descents
Weak-descents
Generating functions
Cramer's method

Abstract

A composition $\pi=\pi_{1} \pi_{2} \cdots \pi_{m}$ of a positive integer n is an ordered collection of one or more positive integers whose sum is n. The number of summands, namely m, is called the number of parts of π. We say that π contains a rise, a weak-rise, a level, a descent, or a weak-descent at position i according to whether $\pi_{i}<\pi_{i+1}, \pi_{i} \leqslant \pi_{i+1}, \pi_{i}=\pi_{i+1}$, $\pi_{i}>\pi_{i+1}$, or $\pi_{i} \geqslant \pi_{i+1}$. Using linear algebra, we determine formulas for generating functions that count compositions of n with m parts, according to the numbers of rises, weak-rises, levels, descents, and weak-descents, and according to the sum, over all occurrences of the rises, weak-rises, levels, descents, and weak-descents, of the first integers in their respective occurrences.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A composition $\pi=\pi_{1} \pi_{2} \cdots \pi_{m}$ of a positive integer $n \in \mathbb{N}$ is an ordered collection of one or more positive integers whose sum is n. (That is, π is a partition of n in which

[^0]Table 1
Explicit formulas for the average sum of the values of the first letters of the occurrences of σ in compositions of C_{n}, where $\sigma \in$ Pat $_{2}$.

$\sigma \in$ Pat $_{2}$	Average sum of the values of the first letters of the occurrences of σ in compositions of C_{n}
rise	$\frac{2}{27}(3 n-7)+\frac{1}{2^{n+1}}-\frac{1}{27 \cdot 2^{n+1}}(6 n-1)(-1)^{n}, n \geqslant 3$
descent	$\frac{1}{27}(15 n-38)+\frac{3}{2^{n+1}}-\frac{1}{27 \cdot 2^{n+1}}(6 n+5)(-1)^{n}, n \geqslant 1$
level	$\frac{2}{27}(3 n-1)+\frac{1}{27 \cdot 2^{n-1}}(3 n+1)(-1)^{n}, n \geqslant 1$
weak-rise	$\frac{4}{27}(3 n-4)+\frac{1}{2^{n+1}}+\frac{1}{27 \cdot 2^{n+1}}(6 n+5)(-1)^{n}, n \geqslant 3$
weak-descent	$\frac{1}{27}(21 n-40)+\frac{3}{2^{n+1}}+\frac{1}{27 \cdot 2^{n+1}}(6 n-1)(-1)^{n}, n \geqslant 1$

the parts are ordered.) The number m of summands is called the number of parts of π. For example, the compositions of the number 4 are $4,31,13,22,211,121,112$ and 1111. We denote the set of all compositions of n or with exactly m parts, or with exactly m parts in $[d]=\{1,2, \ldots, d\}$, by C_{n}, or $C_{n, m}$, or $C_{n, m}^{[d]}$, respectively. Clearly, the number of compositions of n is given by $\left|C_{n}\right|=2^{n-1}$.

Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{m}$ be any composition of n with exactly m parts in \mathbb{N} and let $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{s}$ be any word of length s, where $m \geqslant s$. An occurrence of σ in π is a subword $\pi_{i} \pi_{i+1} \cdots \pi_{i+s-1}$ which is order isomorphic to σ, i.e., $\pi_{i-1+a}<\pi_{i-1+b}$ if and only if $\sigma_{a}<\sigma_{b}$ for all $1 \leqslant a<b \leqslant s$. In this context, the word σ is usually called a pattern of length s (or an s-letter pattern). We denote the number of the occurrences of σ in π by $\operatorname{occ}_{\sigma}(\pi)$ and we denote the sum over all occurrences of σ in π by $\mathrm{sfl}_{\sigma}(\pi)$ of the values of the first letters. For example, the occurrences of the pattern 112 in the composition $\pi=1122411$ of 12 are 112 and 224 , and $s f l_{112}(\pi)=1+2=3$.

Rises, weak-rises, levels, descents, and weak-descents can be regarded as the simplest of patterns, namely the 2-letter patterns. A rise corresponds to the subword pattern 12. A weak-rise corresponds to the subword patterns 11 and 12 , a level to the subword pattern 11, a descent to the subword pattern 21, and a weak-descent to the subword patterns 11 and 21.

Alladi and Hoggatt [1] studied the generating function for the number of compositions of n with parts in $\{1,2\}$, and they showed that the number of rises, levels and descents, exhibit connections with the Fibonacci sequence. Chinn and Heubach [7] generalized to parts in $\{1, k\}$, and Chinn, Grimaldi and Heubach [5] extended them to parts in \mathbb{N} (for other extensions, see $[6,8,9,11,12]$). Later, Heubach and Mansour [10] studied the generating function for the number of compositions of n with exactly m parts according to the number of occurrences of the patterns 11, 12 and 21 (for other reference, see also [2-4] and references therein).

In this paper, for any fixed pattern $\sigma \in$ Pat $_{2}=\{$ Rise, Weak-rise, Level, Descent, Weak-descent\}, we will derive the generating functions for the number of compositions, the number of parts, and the statistics $o c c_{\sigma}$ and $s f l_{\sigma}$. This unified framework generalizes earlier work by several authors. From this, we obtain generating functions and explicit formulas for the average sum of the values of the first letters of the occurrences of σ in compositions of n, see Table 1.

https://daneshyari.com/en/article/4599673

Download Persian Version:
https://daneshyari.com/article/4599673

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: walaa_asakly@hotmail.com (W. Asakly), tmansour@univ.haifa.ac.il (T. Mansour).

