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1. Introduction

Let A be a bounded linear operator on a complex Hilbert space H. The numerical
range of A is defined as the set

W(A) = {(Az,z): ||lz|=1, z € H},
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where (-,-) and || - || denote the standard inner product and its associated norm in H. It is
known that W(A) is a nonempty, bounded and convex subset of C, see for example [12].
The numerical radius w(A) of an operator A is given by

w(A) = sup{|A|, A € W(A)}.

For its other properties, see [12].
We consider a weighted shift operator A on the Hilbert space ¢2(IN) defined by

0 0 0 O
ag 0 0 O

A= Aay,az,...) = 0 aza 0 O (1)
0

where {a,} is a bounded sequence. Define a unitary operator
U = diag(s1, 5152, 515283, - - .),
with s1, $p41 = @n/ayn if ap, #0, and s,41 =1 if a,, = 0. Then
UAU* = |A|,

where |A] is the entrywise absolute value (|a;;|) of the matrix A = (a;;).

Hence, we can always assume the weights of a weighted shift operator are nonnegative.
It is known that the numerical range of a weighted shift operator is a circular disk about
the origin, see for example [15] and [16] and the numerical range of a weighted shift
matrix is a closed circular disk centered at the origin, see for example [8].

In particular, W(A(1,1,...)) is an open unit circular disk (see [16]). Further, Berger
and Stampfli [1] showed that if (1 + h) > /2, then

w(A(l+h,1,1,..)) = ((1+h)2—1)1/2+((1+h)2—1)‘1/2),

N | =

Recently, Chien and Sheu [7] showed that if (14 h) > @, then

w(AL1+0,1,..)) = = ((M2 + 1) + \/(h(2 +h)* +4h(2+ h))/2)"

N | =

+ ((h(24 h) + \/(h(2 + h))2 +4h(2 + h))/2)‘1/2)7
also if (14 h) > /2 then they showed that
w(Ar) < w(Ag),

where A; = A(1+h,1,1,...) and Ay = A(1,1+h,1,1,...).
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